
Internal Report 09-04 March 2009

Universiteit Leiden

Opleiding Informatica

Distributed Approaches for Discovering

Unique Factors in the Human Genome

Kristian Rietveld

BACHELORSCRIPTIE

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Voor Ginny

Contents

1 Introduction 3

1.1 Previous work . 3

2 The problem 5

2.1 General algorithm . 5
2.2 Distributing the work . 6
2.3 Multi-core processors versus multiple cluster nodes 8
2.4 Development of the resulting application . 9
2.5 Hardware used for research . 9
2.6 Data set used for research . 10

3 Splitting using the index table 11

3.1 Details of the algorithm . 11
3.1.1 Splitting up the work . 11
3.1.2 Combining the work . 12

3.2 Future research . 14

4 Splitting using substring prefixes 16

4.1 Details of the algorithm . 16
4.1.1 Splitting up the work . 16
4.1.2 Work done in parallel . 17
4.1.3 Combining the work . 18

4.2 Performance . 19
4.3 Future research . 21

5 Conclusions 22

A Description of programs written 24

A.1 Pthread-based version . 24
A.2 MPI-based version . 25

1

1 Introduction

The Human Genome, which is found in all of our body cells, is a fascinating large data set.
It contains 3× 109 nucleotides, or “characters”, resulting in about 3 gigabyte of ASCII data.
Compared with other contemporary data sets this may not be very large, however the entire
genome is replicated many million times in our body, which is one of the facts that makes it
very fascinating. Finding patterns in this data is much more time consuming than one would
expect and the useful data that results as output can be in the order of many gigabytes. Much
research is nowadays done in the area of computational biology and bioinformatics, pioneered
by Gusfield [2].

DNA is built up from nucleotides, any of which contains one of the 4 bases (“A”, “C”, “G”
and“T”). These 4 characters form the alphabet from which strings can be created. In cells the
DNA has a double helix structure with two strands of nucleotides, both containing the same
information. The second strand is the reverse complement of the first one. Complements are
formed by considering the pairs between nucleotides: “T” is the complement of “A” and “G” of
“C”. We are speaking of a reverse complement because the second string is read in the other
direction.

In most problems the reverse complement of the genome also has to be considered (even
though it can be generated from the first DNA strand), which will double the size of the
problem space. What we actually have to analyze is now a string of 6 gigabytes. A string of
such a length calls for the development of new and more advanced algorithms if we want to
get any calculations involving the entire genome done in reasonable time.

One of the problems that is useful to tackle is finding all unique substrings in the genome.
A substring is unique if it only appears once in both the first DNA strand and its reverse com-
plement. These unique substrings have several useful applications. One of these is the creation
of primers. Researchers often want to isolate a specific piece of DNA. Several techniques exist
for this and they all (obviously) need a way to mark exactly which part of the DNA should
be isolated or duplicated. Primers are unique or rare substrings of arbitrary length that are
used for making these marks.

Efficient algorithms for extracting unique substrings from the genome have already been
researched. These algorithms do run in a reasonable amount of time. They are limited by the
length of the substrings that they can process efficiently. When used on the entire human
genome, it appears that as soon as the length of the substrings requested increases above 15,
the time that is needed to complete the request exponentially increases, caused by the fact
that current technology machines do not have enough main memory available. In this thesis
we will describe distributed approaches for solving the problem of finding unique factors in
the human genome. Instead of a single processing unit, we will make use of super computer
clusters that have a large amount of processing power and main memory available.

Next we will briefly look at previous work that has been done in this area. In chapter 2,
we will look at a more general formulation of the problem and the basics of solving this in
a distributed fashion. Chapters 3 and 4 provide details on two distributed approaches that
have been implemented and experimented with.

1.1 Previous work

In Laros [4] several methods are discussed for determining all unique primers. It was concluded
that solving this problem is possible up to a certain length. The main problem was that the

3

primers and the number of times that they were encountered could not be stored in main
memory all at once. If this were possible, the problem would be solvable in linear time. A
distributed approach can help here by exploiting the fact that many cluster nodes combined
have a lot of main memory available.

The main improvements in [4] were established by encoding the ASCII DNA data into
a binary file. This binary file format compresses the original data by a factor of 2. Also it
improves the calculation speed as we can now use simple binary arithmetic instead of more
expensive string operations. The best performance was achieved by calculating the solution in
multiple passes. Because of memory limitations it is not feasible to process the entire problem
space at once. In each pass the program searches for all unique factors starting with a given
prefix. This prefix changes with each pass through the DNA.

We will re-use the binary file format and other tools devised during the work for this thesis.

Van Vuurden discusses the usage of truncated suffix trees [7] in [11]. Suffix trees ([10] and
[6]) can describe the uniqueness of strings of arbitrary length. Memory is saved by setting
a maximum on this length, which truncates the suffix tree. If the substrings also need to
satisfy one or more non-decreasing functions, the suffix tree can be pruned even more, further
decreasing the amount of memory required. As long as the suffix tree fits in main memory,
creation and analysis of this tree can be done in linear time.

Application of these methods on DNA has been said to be possible up to a maximum
substring length of 50 and with the functions for GC-percentage and melting temperature
applied. As the ideal length for a primer laid between 10 and 30 at the time of this research,
the method was deemed to be suitable for discovering unique substrings. Unfortunately, the
tree representing the entire human genome could not be fitted into main memory with the
current technology at that time.

4

2 The problem

The problem that we want to solve can be formulated as follows: we want to find all unique
substrings in the genome, with a fixed length of 32 and larger, in a reasonable amount of
time. We have seen in the introduction that the methods discussed in previous work do not
scale beyond a length of about 15. In this chapter we will discuss the basic algorithm that
has been devised to solve this problem. We will show how this algorithm can be parallelized.
At last we will discuss the first steps that were taken to implement this approach, which lays
the basis for Chapters 3 and 4.

2.1 General algorithm

We consider the genome as a long string of data. We can then say that a substring starts at
each offset in the string. Each of these substrings will have to be considered for uniqueness,
also all substrings in the reverse complement. The reverse complement substrings can be found
by walking the same string in the reverse direction.

Space complexity is the most important factor to consider when designing the algorithm.
We have chosen to only store offsets to substrings in the genome in the main memory and not
the substrings themselves. Considering that the length of the human genome is about 3× 109

nucleotides, we need space for 3 × 109 offsets. An offset fits in a normal 4 byte integer. This
means we need about 4 × 3 × 109 bytes (or about 12 gigabytes) of main memory to store
all the offsets. To account for all offsets for analyzing the reverse complement, this amount
has to be doubled. So, in total about 24 gigabytes of main memory is needed to perform this
calculation excluding the memory needed for storing the genome itself.

Another reason for storing offsets into the genome and not the substrings themselves is that
this gives us linear space complexity no matter what the requested length of the substrings
to extract is. This will allow us to work with any substring length we would like without
increasing the memory requirements. Now the size of the table containing the offsets will stay
more or less constant (it will actually be smaller, because the genome contains less substrings
of length 64 than length 15 for example), we can expect the time required for sorting to be
constant as well as long as the number of substrings to sort is much smaller than the total
number of possible strings 4length that can be formed with the alphabet. So our algorithm will
be both constant in space and time for a given genome (linear in the length of the genome).

After we have filled a table in memory with offsets that all point to substrings in the
DNA, we have to sort this table. We sort this table by comparing the substrings in DNA
pointed to by the offsets. This means that the offsets in the resulting table are not sorted
according to their actual integer value, but to the value of the substring they point to. Any
sort method can in theory be used for this step. We have chosen to use quicksort, as this
algorithm is known to be one of the most efficient ones available with well optimized versions
in each C library. In the future an implementation of the faster radix sort algorithm can be
investigated. A simple DNA substring comparison function is used as the compare function
in the quicksort routine. The output is a truncated suffix array ([5], [3]), which means that
every substring of length ℓ and smaller can be found efficiently with this array. In a normal
suffix array, every substring can be found.

Finally, we can simply iterate over the sorted table of offsets to count how often each
substring occurs in the genome. We need to compare each string a single time. We know that
all strings are in a sorted order, so as soon as two strings passed to the compare function are

5

not equal, we can start the count for the a string. The count that is saved is either zero, one,
two or three, corresponding to whether the substring is unique, the substring occurs twice,
thrice, or four times or more. The algorithm that is used for this unique counting is shown in
Algorithm 1. In this algorithm, current and i are indices into the array of offsets. A call to
substring(i) returns the substring pointed to by the ith offset in the offset table. The result
of the algorithm is a filled table substring count that contains how often a substring exists
in the genome. Index i into substring count corresponds with the substring located at the
offset described by the ith element of the offset table.

Algorithm 1 Unique counting algorithm

1: i← 0
2: while i < #offsets do

3: count← 0
4: current← i

5: i← i + 1
6: while i < #offsets and substring(current) = substring(i) do

7: count← count + 1
8: i← i + 1
9: end while

10: if count > 3 then

11: count← 3
12: end if

13: for j = current to i− 1 do

14: substring count(j)← count

15: end for

16: end while

The table that is the result of executing this algorithm uses a (truncated) suffix array to count
substrings. The same array also allows us to find unique substrings that are smaller than the
substring count that has been used to creating the suffix array.

2.2 Distributing the work

One of the advantages of the above algorithms is that it can be very easily distributed over
multiple processors. This can be done by splitting the genome in several pieces. Each processor
can be assigned one of these pieces. The sorting of the offsets table can then be done in parallel.
The hardest part is adapting the unique count procedure, which has to become a“distributed”
algorithm. We have to merge sort several tables, that are this time not all located in local
memory, but in the memories of the cluster nodes used. Then we can apply unique counting to
the entire table. This part of the algorithm can not be done in parallel, as the same substring
might be on several nodes.

The core of this algorithm is that we request the current smallest substring from each
node. If we have split up the genome over n nodes, we will receive n substrings. One of these
substrings must be the smallest that is currently available and will be picked. We need to
signal the node corresponding to the picked substring, so that it can increase the pointer that
points to its current smallest substring. The algorithm will terminate when all nodes are out
of substrings. So instead of walking over a single offsets table, we will walk over a virtual table

6

that is created by filling it with the next smallest item from the n nodes until the available
substrings at the nodes are exhausted.

Incorporating these changes, the distributed unique count algorithm is listed as Algo-
rithm 2. Note that current and substring() now use the actual offsets contrary to an index to
the offset in the array as in algorithm 1. The function get smallest will return the number of
the slave that contains the smallest item (in variable smallest) and the offset of the smallest
substring. This function will also notify the node that sent the offset of the smallest substring.
When all nodes are out of substrings, −1 will be returned in the variable smallest.

Algorithm 2 Distributed merge sort and unique counting algorithm

1: i← 0
2: smallest, offset ← get smallest()
3: while true do

4: count← 0
5: current← offset

6: if smallest = −1 then

7: return

8: end if

9: push offset

10: smallest , offset ← get smallest()
11: while smallest 6= −1 and substring(current) = substring(offset) do

12: if count < 3 then

13: push offset

14: else if count = 3 then

15: for i = 0 to count do

16: pop tmp offset

17: substring count(offset)← count

18: end for

19: substring count(offset)← count

20: count← count + 1
21: else if count > 3 then

22: substring count(offset)← 3
23: count← count + 1
24: end if

25: end while

26: if count ≤ 3 then

27: for i = 0 to count do

28: pop tmp offset

29: substring count(tmp offset)← count

30: end for

31: end if

32: end while

7

2.3 Multi-core processors versus multiple cluster nodes

These days the de facto standard processors sold for desktop machines are multi-core pro-
cessors. As of this writing processors with 2 or 4 cores are popular, basically giving you the
power of a 2 or 4 processor system, all with access to the same memory. For this kind of
systems we can load the genome into memory once and this can be shared amongst calcula-
tion processes running on the available processor cores. We can split up the problem into 2
or 4 pieces and process these pieces simultaneously. This can be easily done by making the
program multi-threaded.

We have written such an implementation using the pthread library, as is very common on
UNIX platforms. There are several advantages to this kind of implementation with regards
to testing: all processing happens locally, there is no network traffic involved; and pthread-
based programs are very easy to debug compared to programs that run on clusters. The code
written using pthread has been used as a test bed for testing the algorithm for correctness
before we moved on to running this code on clusters.

Another advantage of doing all processing locally is that the implementation of unique

count has direct memory access to all tables to be processed. It is directly clear that this
gives us a speed advantage.

Multi-core processors give us a lot of processing power, but often the memory available is
still limited. Machines that have the required ±30 gigabytes of main memory installed are
rare. By using a super computer cluster, we get the required amount of memory and even
more processing power at our disposal. An important difference with multi-core computers is
that the processors do not all have access to the same memory area, each node has its own
main memory. During unique count data will have to be exchanged over a local network.

Cluster nodes have to communicate with each other, to announce how the work will be
divided between the nodes and to share the results obtained by each node. Communication
happens by passing messages. Standards have been developed for exchanging information
between cluster nodes. One of the most used is MPI [1], which stands for “Message Passing
Interface”. MPI defines a series of library calls that can be used for sending data to other
cluster nodes. There are calls like the standard send, receive and broadcast calls, but also
calls more aimed at usage in a distributed setting such as gather. This call will collect an
equally sized amount of data from each cluster node and merge all of these into a single array
that will be delivered to the receiving cluster node.

The MPI library calls are all strictly defined. Several implementations exist of this set of
calls. There is also a simple shared memory implementation of the MPI library, which (again
like the pthread-based version described above) allows for local processing and thus easy
debugging. On clusters, high-end implementations are used, making use of very fast Myrinet
network interfaces commonly available on super computer clusters. We have been testing our
code on clusters that indeed have Myrinet networking available.

In general, it is known that when writing multi-threaded programs the amount of locking
and synchronization has to be brought to the absolute minimum. Using too much locks can be
detrimental to the performance of the program, because many processor cycles will be spent
waiting to acquire a lock. This is also known as “lock contention”. For clusters the same holds
for all communication that has to happen between nodes. The only communication that has
to happen for the algorithm listed above is dividing the work between the nodes and the final
unique counting phase. During development it appeared that this unique counting phase is

8

indeed critical and causes many performance problems, more on this in Chapter 3.
Modern clusters actually consist of multiple nodes that again have dual or quad core pro-

cessors built in. There is no need to build a threaded version of the cluster application, such
that each cluster node will run a single instance of the application and this application will
spawn several threads to occupy all processor cores available on the cluster node. Instead
we can just run more instances of the same MPI program on a single cluster node. If we
use memory mapping to load the file containing the genome information into main memory,
then the same memory pages with this information will be shared amongst the several MPI
processes running on the same cluster node.

We have designed the structure of the source code in such a way that most of the code
will be shared between the threaded and MPI-based applications. The only code that differs
is the code that deals with communication. Obviously the threaded version uses shared mem-
ory communication and for the MPI version communication is done through the MPI library
calls.

2.4 Development of the resulting application

A distributed version of the algorithm outlined above that runs on super computer clusters has
been incrementally developed. We have outlined in the previous section that both the pthread
and MPI versions of the code take advantage of memory mapping to load the genome into
memory only once and share it between the calculation processes. The original code as written
by Laros [4] uses another method to load the data from file (see also Section 2.6). The first
step that we took was to write code to memory map the binary file containing the DNA data
into memory and properly read and write the results to and from this file. This code has been
abstracted away into libdnabin so that it can be easily re-used in multiple programs.

This library has been tested first in a simple single core implementation of the algorithm
outlined above. Once this version worked and gave correct results we adapted it to use threads
using the pthread library. A few first timings have been done on a quad-core computer. This
also allowed us to make a few optimizations.

When the pthread version was feature complete and well tested, it was easy to turn this
into a program that was suitable for usage on super computer clusters. To start with, only
the code portions that handled communication had to be replaced. However, this was not
enough to achieve proper performance. In the next chapters we will discuss the details of
these distributed implementations of the algorithms and show which changes we have made
to improve the performance.

2.5 Hardware used for research

We have developed our cluster code on the Distributed ASCI Supercomputer (DAS) 2 cluster
available at Leiden Institute for Advanced Compuer Science (LIACS). On the DAS3 cluster
sites at both LIACS and the Computer Science department of the Vrije Universiteit (VU) in
Amsterdam we have conducted the experiments. The DAS3 system is a distributed super-
computer with clusters at five sites. Next to LIACS and the VU, these sites are located at the
University of Amsterdam, Delft University of Technology and the MultimediaN Consortium.
The cluster sites are interconnected with a very high speed network. Each cluster has a dif-
ferent configuration, for the two clusters we have used for the experiments the configurations

9

are listed in Table 1.
DAS3 is used for research on parallel, distributed and grid computing. Any student or staff

member at the participating universities can get access to the supercomputer. On the DAS3
website (http://www.cs.vu.nl/das3/) more information can be found about the different
cluster sites, research and procedures for requesting access to the machine.

In the next chapters, comparisons will be made between the performance of the same
algorithm using a pthread-based configuration on a multi-core machine and MPI-based con-
figurations on both multi-core machines and clusters. To allow for a fair comparison of these
results, we will list the hardware that was used for these measurements in Table 1. All ma-
chines were running the Linux operating system.

Multi-core machine Intel Core Quad (Q6600) at 2.4Ghz
4Gb main memory

DAS3 at LIACS 32 available nodes
2 AMD Opteron at 2.6Ghz
4Gb main memory
Myri-10G interconnect

DAS3 at VU 85 available nodes
2 Dual-core AMD Opteron at 2.2Ghz (4 cores total)
4Gb main memory
Myri-10G interconnect

Table 1: Concise overview of the hardware configuration of our testing equipment

2.6 Data set used for research

As test data we have used the human genome provided by the University of California in
Santa Cruz [8]. The data is stored per-chromosome in FASTA format, which is a plain ASCII
listing of the data. Laros [4] describes a binary file format in which both the genome data is
saved and the occurrence count (once, twice, three times, or four times or more). By binary
encoding this information the file size is decreased by 50%. Because we memory map these
files directly into memory, this also saves 50% of main memory.

We have re-used the comb tool written by Laros for converting FASTA files into binary
files. Using libdnabin we have written our own version of the statistics tool that outputs
the sum of substring counts for verification purposes.

10

3 Splitting using the index table

In this chapter we will look at the first of the two distributed approaches that have been
attempted. This first approach closely resembles what has been outlined in Section 2.1. We
will discuss some of the details of the implementation and the problems that arose during the
development. Solutions for these problems and ideas for future research will be given.

3.1 Details of the algorithm

Intuitively, the algorithm is quite simple. The work has to be divided and distributed to the
available nodes. The number of available nodes as well as the sizes of the different “chunks”
of work are completely arbitrary. Note that the amount of DNA to process does not have to
be the same for each node, however, the more equalized these amounts are the more efficient
the calculation will be performed as there will be less time spent by nodes waiting for other
nodes to finish. A merge sort and unique count follows the sorting of the offset arrays. In this
section we will describe how the work is divided amongst the nodes and how the merge sort
and unique count are performed. Recall from the previous chapter that these are the only two
tasks where communication between the nodes is involved.

3.1.1 Splitting up the work

Sequential DNA data contains “gaps” (for various biological reasons) that do not contain any
data that is useful to process. In the binary files that we use for processing, these gaps are
not included to save space. The offsets of the substrings in the DNA should still match with
the DNA data that does contain the gaps. To resolve this, the binary file contains an index
table that contains offset and length information about the DNA fragments in the binary file
that are suitable for processing.

We have used the separation, in the form of gaps, between the data chunks as points
to split up the work. Using the offset and length information from the index table and the
requested substring length, we can calculate how many substrings can be found in each of
the fragments. The first step is to calculate the total amount of substrings that are to be
found in the entire data set to process. With the given number of nodes that are available
for calculation, we can determine the average amount of substrings each node has to process
with a simple division.

The DNA fragments that are in the binary files are all different in length. Some fragments
are very small, others are very large. In order to equalize the amount of work between all
nodes, we will try to create sets of fragments in such a way that the number of substrings
in each set is about the same. The target number of substrings for each set is of course the
average number of substrings to be processed by each node.

We will create those sets with a simple loop iterating over the index table. The number
of sets to create equals the number of nodes available for computation. (Note that we are not
considering the reverse complement here yet, this will follow later). Now we iterate over the
fragments in the index table and continue adding fragments to this set until it contains 65%
or more of the average number of substrings per node. Then we will start filling the next set of
fragments. The 65% figure has been chosen empirically by looking at how equal the number of
substrings to process is between the different sets. One drawback of this approach is that sets
can only be filled with subsequent fragments. An algorithm that considers all fragments and

11

creates sets from that would be more complex but should result in combinations of fragments
that have more equal sizes.

For the reverse complement, the number of substrings per fragment are exactly the same.
The fragments for the reverse complements can be handled separately from the other frag-
ments. We can create the sets for the reverse complements by simply cloning the respective
sets for the normal case. This means we will end up with exactly twice the amount of sets. So
when creating the sets we will not use the full number of nodes that are available but half of
that. Combined with the sets for the reverse complement there will be a work set of fragments
for each node.

In case the super computer cluster has dual core nodes, it is an interesting optimization
to make sure that both the normal and reverse complement work sets that address the same
fragments run on the same dual core node. Then both processes will work on the same piece
of the genome and this piece can be shared in memory and only has to be read from disk
once.

A few words on what exactly specifies the number of available nodes is in order. For
the pthread version, the number of threads to spawn can be specified as a command line
argument. The most efficient is to account for a single thread per available processor core.
Alternatively, we could change the code to automatically detect the number of available
processor cores and set that as the number of threads to create. In the MPI version it depends
on the cluster environment how the number of nodes is specified. If one starts the MPI program
directly from the command line (typically done using mpirun, see the documentation of the
implementation of MPI of your choice) it can be specified on the command line. When using a
job submission system (like DAS3), you have to specify the amount of slots (nodes) to reserve
for your job. In case each node contains multiple processor cores, you will have the number of
reserved slots times the number of processor cores per node available. Our program code uses
the appropriate MPI function calls to determine the amount of nodes available at runtime.

Once the work sets have been created they can be handed out to the different nodes.
Each node will then, in parallel, create a suffix array that contains offsets of all substrings
that are contained within the set of fragments. These suffix arrays are sorted based on the
comparisons between the substrings pointed to by the offsets in the array as explained in the
previous chapter.

3.1.2 Combining the work

Finally, the fragments of the sorted suffix array that are spread out over the different nodes
have to be merged into a single suffix array. In this suffix array we can easily count the number
of times a substring occurs in the entire genome. These count values are written back to the
binary genome file.

The algorithm that is used for this is a distributed variant of the unique count algorithm as
outlined in Section 2.2. A master-slave model is used for executing this algorithm. One node
will be designated as master and do the actual merge of the separate arrays and comparing
the consecutive smallest substrings for the unique counting. The pthread version of the code
uses a shared memory model and thus a “master” thread has direct access to the suffix arrays
of the other threads. No communication between nodes is needed here. Below, we will compare
the performance of the distributed unique count algorithm implemented using MPI with the
pthread version. The MPI code has been run using the shared memory back-end on exactly
the same hardware as the pthread version. Because of the overhead of the MPI library and

12

simulation of the communication calls, the MPI version was expected to be marginally slower
than the pthread version.

We use a get next smallest call that will ask each node for its current smallest entry from
the suffix array. This will result in #nodes entries. The smallest of these values is chosen and
of the respective node the pointer to the current smallest entry is incremented.

In the algorithm as listed in Section 2.2 the resulting count values are written to a
substring count array. Instead of creating a new full count array, the master node that does
the counting will immediately write the count the to binary file through libdnabin.

The main bottleneck that puts an upper bound on the performance of this algorithm is the
speed by which the master node can receive the smallest entries from the nodes and compare
the consecutive smallest substrings. The communication between the nodes is crucial, as we
have discussed in Section 2.3. Several different approaches to exchanging information have
been investigated in order to bring performance to an acceptable level.

One of the first attempts that has been made, transferred the smallest entries one at the
time. We used MPI’s gather primitive to transfer these values. The gather primitive works
by asking each node simultaneously for a value of the same type, these will be “gathered” and
returned at the same time in an array (with size equal to the number of nodes taking part
in the communication) to a given node. In our case this given node is our designated master
node. As a standard MPI practice, most often node number 0 is used as master node. The
number of the node that delivered the smallest substring will be notified via broadcasting.
This way the respective node can increment the pointer to its current smallest entry and
all other nodes know that a smallest has been chosen. All nodes will then send their current
smallest entries. The gather and bcast calls are both also a kind of synchronization primitive
and thus have to be called in exactly the same order on all nodes to avoid deadlocks.

Immediately several disadvantages of this approach come to light. Firstly, a lot of values
are sent over the network more than once. In a network of 32 nodes a single entry will be
chosen as smallest, so all of the 31 other values will be submitted again. This is a waste of
network resources. Next to that the latency is too high to be able to handle a single item at
the time. A lot of time will be spent waiting for other nodes to synchronize. As we scale up
the network to include more nodes, more and more time will be lost this way. Even with a
small number of nodes, the performance of this approach was nowhere near acceptable values.

A logical next step was to look into creating a “batched” version of this communication
protocol, where the offsets of the smallest substrings would be sent to the master node in
batches. Instead of gathering a single entry we will gather an array of entries. We denote
the size of this array by batch size. The main node can process these local arrays of smallest
entries (one array per node) without doing another gather call until one of the arrays is out
of entries. As soon as this happens the arrays are thrown away and a new gather call is done.
The broadcast of selected smallest entries still happens on the basis of one call per processed
entry, causing the corresponding node to increment its pointer to the current smallest entry.
When the new gather call is done, all nodes will return batch size elements from the sorted
arrays starting at the locations of the current smallest substrings. We assume here that the
worst case where all consecutive smallest entries have come from the array of the same node
(and thus all other arrays have not been touched) does (almost) never happen for large batch
sizes.

The expectation was that this protocol would bring down the amount of network traffic
wasted by trying to re-use as much of transferred data as possible. It appeared that still
much time was spent on communication. Also doing the broadcast of the selected smallest

13

values in a batched version resolved these problems to some extent. In the last incarnation of
the protocol, a loop is executed that does a gather for batch size smallest entries, these are
processed followed by a bcast of batch size numbers of selected nodes.

Increasing the batch size to larger numbers indeed decreased the time needed for commu-
nications and thus the runtime. This confirms that the batched approach does have a positive
effect on the runtime. With small batch sizes (in the order of 30000) performance was still not
up to par. The batch size has been increased to up values of 16 million. Further increasing
the batch size did not yield a decrease in runtime, suggesting that the size of the batches was
no longer the bottleneck.

Of the entire runtime of the algorithm, less than 10% was spent on quicksort with all
remaining time being spent on merging the tables from the participating nodes. (On DAS3,
testing with a portion of the entire genome, we have seen figures where 20 seconds out of 12,5
minutes were spent on quicksort, the remaining time on merging). The merging should be
much less computationally expensive compared to the quicksort. The master node is on its
own responsible for running the entire unique count algorithm with data submitted from all
participating nodes. We suspect that this task is too large to be accomplished in reasonable
time by a single node.

The solution for the unique count performance problems is to also distribute the unique
counting over several nodes. There certainly are possibilities for this. However, because a dif-
ferent approach to splitting up the work, which is presented in the next chapter, was both
easier to implement and more probable to yield an increase in performance, the implementa-
tion of a fully distributed merge and unique count algorithm was not pursued.

3.2 Future research

The algorithm that has been presented in this chapter has been shown to work and delivers
correct results. As discussed in the last section the performance of the algorithm is still poor,
mostly caused by the implementation of merge sort and unique count running on a single
node. A single node seems unable to handle the massive network traffic involved and do the
sheer amount of necessary comparisons for unique counting. Still, there are several possibili-
ties for improving the performance of this algorithm that could be explored in future research.

By changing the unique count algorithm to distribute the work load over several nodes, we
think that a big performance gain can be achieved. Let us distribute the unique count work
load over 4 nodes, then one node will be in charge of handling all substrings that start with
“a”, and the three other nodes will handle “c”, “g” and “t” respectively. All nodes that have a
sorted suffix array can find out where in the table the substrings starting with the different
nucleotides are located using a fast binary search. Simultaneously nodes will be submitting
parts of their suffix array starting with the different nucleotides to the corresponding nodes.
When the 4 nodes are done with the merge sort and unique count calculations, the 4 resulting
arrays can simply be concatenated to form the final complete array.

It is trivial to see that this approach to merging and unique counting sorting can be
expanded to use more nodes by enlarging the prefix. We can distribute the unique counting
over 16 nodes by designating one node for all substrings starting with aa, ac, ag, and so on.
For this method to work most efficiently, each processor node has to process a single prefix.
This means that the number of nodes must be a power of 4, which will be a problem as soon
as the prefix length becomes longer.

14

As more nodes are used for the unique count calculation, CPU power should no longer
be the main problem. The network traffic will become more complex, because there will not
be just communication with one master node. Designing a well performing communication
protocol will be the main challenge of this research.

We have seen in Section 3.1.1 that the equalization of the work between the nodes is not
optimal. This gives us an opportunity for a small performance improvement. A better algo-
rithm can be designed that is not constrained to iterating over the fragments once and in
a single direction and thereby decreasing the difference between the average number of sub-
strings to process per node and the sum of the fragments found in a work set. The decreases
in runtime achieved by this optimization will become more visible when the size of data to
process becomes larger.

15

4 Splitting using substring prefixes

Although the distributed algorithm discussed in Chapter 3 is able to quickly result in separate
sorted suffix arrays, we have not been able to merge these arrays in a reasonable amount of
time. This chapter will present an alternative distributed approach. By using another property
of the problem for splitting up the work, we are able to remove the problematic merge sort
and unique counting stage. We will describe the algorithm and discuss its performance. Again,
we will conclude with some recommendations for future research.

4.1 Details of the algorithm

The algorithm that we will describe in this chapter does not differ much from what was
discussed in the previous chapter. Basically, both could be outlined as follows:

1. Split up the given genome in some way.

2. Each node fills an array with offsets to substrings in the work set it has received. This
suffix array will then be sorted, yielding a suffix array of a particular portion of the
genome.

3. The separate suffix arrays created by the nodes are all merged.

We will discuss the details of all of these three steps in turn.

4.1.1 Splitting up the work

Merge sorting arrays spread out over multiple machines proved to be a problem performance-
wise. It was suggested to try to make this merge sort dependent on multiple nodes by splitting
up the merge sort based on prefixes of substrings. Instead of doing this only for the final merge
sorting phase, we could also do this right from the start. In other words, we will not split
up the work by creating sets of fragments from the index table of the genome, but rather
give each node the entire genome and a prefix of the substrings that should be extracted and
processed. Basically this is a distributed version of the multiple passes method as developed
by Laros [4].

This has serious implications for the memory usage of the algorithm. Whereas the previous
approach only needed to keep parts of the genome in memory, this algorithm needs the entire
genome. Because we are using a memory mapped approach for reading the genome from disk,
we do not have to think about the best way to page parts of the genome in and out, the
operating system will take care of this for us. There is no need to keep the entire genome in
memory all the time, but it is the best option, otherwise we would be reading the same parts
of the genome from the disk more than once.

Splitting up the work is done by choosing a prefix length, let this be plength. If we decide
to process all prefixes simultaneously and using a single node for each prefix (we will later
change this assumption, loosening the requirements), this gives 4plength nodes to get the work
done. The prefixes to pass to each node are easily generated from the given alphabet of
nucleotides. This method does work well; considerable time is saved by the fact that we have
eliminated the need for merge sort and the unique counting that can now be done in parallel.
Still, we can improve this in two areas: the requirement of the amount of nodes available and
the inequality of the size of the subset of substrings starting with the different prefixes.

16

For this splitting algorithm to work, the number of nodes available must be a power of 4.
This is not a problem, until plength becomes larger than 3. A prefix length of 4 requires 256
nodes, this is not something that is widely available in super computer clusters. Doing calcu-
lations on very large numbers of nodes has additional problems as we will see in Section 4.2.
There is no need for all work sets to be processed in parallel, we can also process the work
sets with increasing prefix in sequential order and concatenate them. By changing the model
of work distribution by not doing all calculations on the nodes simultaneously, but working
on pieces of the problem in turn, we can drop the constraint on the number of nodes. This
will enable us to take advantage of, for example, 64 nodes if they are available (which is not
a power of 4), which will give a speed-up in runtime compared with 32 nodes.

Let #nodes be the number of available nodes that is chosen freely. Given this number, we
want to choose plength such that

4plength ≥ #nodes

We will say that this results in 4plength work sets or “batches” that are to be processed by
#nodes nodes. Batches are handed out in sequential order. As soon as a node has finished
processing its batch, it will submit the results to the master node. The master node will then
hand out a new batch to process (as long as there are still batches left). In the previous model,
nodes that were already done processing data had to wait for all other nodes to finish before
the data could be merged together. With this model a node that has finished its batch, will
get another one to process. The utilization of the available CPU power is hereby improved.

To be able to run this algorithm, a separate node has to be reserved that does not take
part in processing a part of the problem. Otherwise, a node that has finished its work set
would block on the master finishing its work set. For determining the amount of batches to
work with, we will subtract one from the given number of nodes to reserve a master node.
The above equation can be solved using 4log #nodes. In code, to avoid dealing with the log

function call and floating pointing numbers, we will increment plength starting at plength = 1
until the above equation is satisfied.

In case the nodes have limited memory available, one could opt to increase the number
of batches. A larger amount of batches means less data per batch and thus a lower memory
requirement per batch. However, this decrease in memory complexity increases the time com-
plexity because the entire genome has to be walked through for each batch. If the genome
does not fit entirely into memory, it will have to be fetched from the disk again which is a
very costly operation.

4.1.2 Work done in parallel

Every node will have to read the entire genome from the disk. With current disk technology,
read speeds of about 40 megabytes per second can be easily achieved. Given 1,5 gigabyte of
genome data, we can expect this to be read into memory in under 40 seconds. The memory
mapped approach will also benefit multi-core cluster nodes, the genome has to be read from
disk only once and all calculation processes running on that node will share the same memory
pages with genome information.

What each node will have to do with the given genome and prefix is the following:

1. Walk over the entire genome and save the offsets of substrings that match the given
prefix into an array. Both substrings in the normal strand and the reverse complement
are considered.

17

2. Sort the array, yielding a truncated suffix array.

3. Iterate over the suffix array and count how often each substring occurs.

4. Submit all this data to the master node. The separate suffix arrays of the nodes can be
directly concatenated, there is no additional processing by the master node required.

Next to the genome, the offsets of the substrings to consider and whether they are in the
reverse complement or not have to be stored in the main memory. The amount of substrings
in the human genome exceeds the maximum amount that can be stored in signed integer
values (231), requiring unsigned integers to be used. Hence, we cannot use the sign bit of
these integers to store the reverse complement status. We will use a separate byte array
for storing this additional information. After we have sorted the array, we will count how
often each substring occurs. This count will be stored in the same byte array as the reverse
complement information is saved in. In total we need 5 bytes of storage for each substring to
consider.

When sorting the array we need both the offset values from the array and the reverse
complement status from the byte array. The default implementation of quicksort in the C
library can only handle a single array as input. To get around this limitation we could have
chosen to use a struct that packs an unsigned integer and a char, create an array of these
structs and pass this to quicksort. Due to architectural constraints, this combination of vari-
ables in a struct will require each structure (and thus each array element) to span 8 bytes.
Three bytes will be left unused, in our case the suffix array will have many indices so the
amount of memory wasted would be substantial.

Instead we have implemented our own variant of quicksort that will sort the array (which
requires the usage of the reverse-bit in the byte array) and at the same time also swap the
values in the byte array so both stay synchronized. Default implementations of quicksort
“from the textbook” do not deliver the performance required for real-world computational
problems. (In fact, it does not even come close). We have adapted an implementation of
quicksort that has been extracted from the GNU C Library [9]. The performance of this
adaptation is comparable with the default qsort library call on Linux systems (which are
generally using the GNU C Library).

4.1.3 Combining the work

Although the batches are handed out sequentially, the results can be merged in any order. This
is because the DNA fragments covered by each batch are partitions of the entire genome. As
soon as a node is done processing the given batch, it will signal the master node. The master
node will respond and the results, that consist of both an array of substring offsets and an
array of occurrence counts, will be streamed to the master node. Streaming the results again
happens with a batched transfer, the size of the batch will mostly influence the efficiency of
the network transfer and the size of the buffer required at the receiving end. The master node
will simply write the given count for the given substring offset directly back to the binary file.

When the master node has received results for all work sets, the calculation is finished
and the program will terminate.

18

4.2 Performance

The runtime required by the final algorithm to process the entire human genome comes close
to what we had initially expected. Utilizing the entire capacity of the DAS3 cluster at LIACS
(spawning 64 processes), we were able to finish computation within 27 minutes for substrings
of length 15. For substrings of length 64 the computation took 29,5 minutes. The difference in
requested substring length does not seem to have much influence on the runtime, confirming
our expectation that the time complexity of the algorithm is constant in terms of substrings
length, if the length of the genome is much smaller than the total number of possible substrings
4substring length.

During the different experiments we have conducted on different configurations of cluster
nodes, we have found that performing calculations on larger amounts of nodes does not always
result in a decreasing runtime. We have done an experiment using 240 processes on 60 quad-
core nodes on the DAS3 cluster at the Vrije Universiteit. It took a very long time to spawn all
processes, some processes were started while others had already been running for 9 minutes.
Based on this observation, we felt a need to get an idea of the differences between different
configurations of nodes.

We have done several experiments with different configurations on the DAS3 cluster at
both LIACS and the Vrije Universiteit. For these experiments we have only used a part of
the genome so that we did not have to continously exceed the maximum allowed runtime of
15 minutes at the DAS3 cluster.

 0

 2

 4

 6

 8

 10

 12

 14

8 16 24 32

M
in

ut
es

Nodes

Run-time Dual Core
Run-time Single Core

Figure 1: Run-time needed to process the first human chromosome on single-core and dual-
core configurations on the DAS3 cluster at LIACS.

On the cluster located at LIACS we have done tests with only the first human chromosome. In
the compressed format, as devised by Laros [4], the size of this chromosome is 108 megabytes.
The results are depicted in Figure 1. When running on dual-core nodes (to get the total
amount of processes used, multiply the number of nodes by two) we see a very sharp decline
in runtime as more nodes are added. However starting at 16 nodes this decline flattens. We
see a likewise development for the runs with single-core nodes. For 8 nodes, the dual-core run

19

is indeed about twice as fast as the single-core run. It is likely that the graph flattens out for
many nodes as the cost of initialization for the calculation are greater than the cost of doing
the actual calculation.

 0

 2

 4

 6

 8

 10

 12

 14

16 24 32 48 64 96 128 192 256

M
in

ut
es

Nodes

DAS3 LIACS Dual-Core
DAS3 VU 32 nodes
DAS3 VU 48 nodes
DAS3 VU 64 nodes

Figure 2: Run-time needed to process the 10th up to the 19th human chromosomes on various
configurations at LIACS and the Vrije Universiteit.

For greater amounts of nodes we have also conducted tests with a larger part of the genome.
This data set contains the 10th up to and including the 19th human chromosomes, with a
size of 767 megabytes in compressed form. Figure 2 shows the results. The tests have been
run at the LIACS cluster site on 16, 24 and 32 dual-core nodes. From the results for 16 and
32 nodes we observe that using twice the amount of nodes does not give us a 200% speed-up.

On the cluster located at the Vrije Universiteit, we have ran the tests on 32, 48 and 64
nodes and in a single, dual and quad core configuration. We can compare the result obtained
at LIACS result for 32 dual-core nodes with the result obtained at the VU for 32 dual-core
nodes and 64 single-core nodes. Both results obtained at the VU cluster are, interestingly, the
same and indicate that these cluster configurations need more time to finish the calculation
due to the lower clock frequency of the processors. When testing with 32 VU nodes increasing
the number of cores used gives a sharp decrease in runtime required. In addition to using
more processor cores for the calculation we think that re-using the genome data amongst the
different processes on the same node also brings some benefit.

For 48 and 64 VU nodes, the results are different. In this case we observe that running in
a quad-core setting is slower than with the same amount of nodes in a dual-core setting, even
though the quad-core case has twice the amount of processing power available. As we have
said above, we believe this is due to the amount of overhead involved in setting up such huge
numbers of nodes.

Also the outcome for 128 nodes is interesting. Using 32 quad-core nodes, the calculation
is considerably faster than by using 64 dual-core nodes. An explanation for this could be
that the 64 node configuration can only share the genome data read from disk twice, the 32
node configuration can share the same data four times. This is however not supported by
the measurements with 64 nodes; one would expect 64 single-core nodes, that have more I/O

20

overhead, to be slower than 32 dual-core nodes.

4.3 Future research

The method described in this chapter has proven to work very well. It scales well when the
number of available nodes increases, but up to a certain amount. At some point the overhead
of starting yet another node becomes higher than performing the calculation with less nodes.

Currently, we put the genome to process on the file server of the cluster. This means that
it has to be transferred to each node over the network. There are possibilities to put the file
to process on the local hard drives of all nodes. Because the DAS3 nodes are interconnected
by gigabit networking, which can transfer data faster than it can be read from hard drives,
we do not expect this to make a very large difference. The same holds for trying to replace
writing back to the file via the network via local writes.

aa 42825917 ca 32751759 ga 26913119 ta 28586316
ac 22621931 cc 24507557 gc 19877632 tc 26913102
ag 32097435 cg 4563388 gg 24507506 tg 32751801
at 33531818 ct 32097507 gt 22621918 tt 42825818

Table 2: Number of substrings to process found in the first human chromosome for prefixes
of length 2

We have seen that batches can be processed out of order without problems. The size of the
different batches varies quite a lot, as can be seen in table 2. It can happen that the node
that finishes its first work set last gets assigned another work set that happens to be the last
available and very large. The computation won’t be finished until this last large batch has also
been processed. Instead of handing out the batches sequentially, we could look into counting
the number of substrings for each batch first. This would require the master node to make
a full pass over the genome, before work is handed out. With knowledge of the size of each
batch, we can hand them out in such a way that work is equalized. Situations like the one
described will not happen and the runtime might be improved again.

21

5 Conclusions

We have developed and analyzed two approaches for extracting and counting substrings from
DNA data. Both methods operate by going through 3 stages: analyzing and distributing the
work, executing as much of the work as possible in parallel, and finally combining the work.
For both methods the space and time complexity only depends on the size of the genome to
process and is constant for changes in the requested substring length.

The first method works by splitting up the DNA data by making use of the gaps in the
data. The resulting suffix arrays from these fragments were created in parallel. At the end,
the separated suffix arrays had to be merged together using merge sort. This proved to be
a major bottleneck. As a recommendation for future development we suggested to look into
distributing the work load of this merge sort.

Alternatively, we created a distributed version of the work done by Laros [4]. We split up
the DNA data by giving each node the entire genome and a prefix. The node extracts and
sorts all substrings from the genome that match the given prefix. This results in suffix arrays
that are partitions of the genome and can therefore be easily concatenated. No merge sort
is necessary and we can count how often each substring occurs in the separate suffix arrays
in parallel. Measurements on DAS3 have shown this algorithm to finish processing the entire
human genome in reasonable time: in about 30 minutes.

22

References

[1] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
http://www.mpi-forum.org/docs/docs.html, November 2003.

[2] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-

putational Biology. Cambridge University press, 1997.

[3] Dong Kyue Kim and Kunsoo Park Jeong Soep Sim, Heejin Park. Linear-time Construc-
tion of Suffix Arrays. In Combinatorial Pattern Matching, volume 2676 of Lecture Notes

in Computer Science, pages 186–188. Springer Berlin / Heidelberg, 2003.

[4] Jeroen F. J. Laros. Unique factors in the human genome. Master’s thesis, Leiden Uni-
versity, May 2005.

[5] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, October 1993.

[6] Edward M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,
23(2):262–272, 1976.

[7] Joong Chae Na and Kunsoo Park Alberto Apostolico, Costas S. Iliopoulos. Truncated
suffix trees and their application to data compression. Theoretical Computer Science,
304(1-3):87–101, 2003.

[8] University of California Santa Cruz. UCSC Genome Browser, Human Genome.
http://hgdownload.cse.ucsc.edu/downloads.html#human, November 2008.

[9] Michael Tokarev. Inline QSORT() implementation.
http://www.corpit.ru/mjt/qsort.html, January 2009.

[10] Esko Ukkonen. Online construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

[11] Klaske van Vuurden. Searching for unique strings of variable length in DNA using pruned

and truncated suffix trees. Master’s thesis, Leiden University, August 2007.

23

A Description of programs written

In this appendix we will briefly describe the programs that have been written for this research
and how these should be used. Both take a binary file with genome data and will output the
results in the same file. They differ in how they use multiple processing units; one uses threads
and the other one MPI communication.

A.1 Pthread-based version

The pthread-based version of the software is meant to be run on computers with single or
multiple processors that share the same memory. This program does not work by handing
out work sets sequentially as described in Section 4.1.1. Currently the prefix length has to be
chosen to match the number of available cores in the system as close as possible. For example,
this makes a prefix length of 1 a good choice for quad core systems, as 41 cores are needed
for this operation. In the future the program could be improved to allow for the computation
of work sets sequentially, like its MPI counterpart.

Further command line options that are supported are:

usage: ./process-pthread [-i file] [-p length] [-l length] [-a directory]

[-v] [-s]

-i file to process

-p prefix length to use for work distribution (default=1)

-l length of substrings to be extracted (default=15)

-a output suffix array files into directory

-v verbose mode

-s exit after determining split points (implies -v)

The option -i specifies a binary genome file to process. This option is always used, together
with the -p option for the prefix length and the -l option for the length of substrings to
extract. -v will enable display of more information, useful for debugging. Another debugging
option is -s, which will make the program exit as soon as the work sets have been created, use-
ful for debugging the creation of work sets without having to wait for the entire computation
to finish.

Finally the -a option allows for outputting the suffix arrays created during the computa-
tion to files. This is done after the separate suffix arrays have been created, but before they
are merged and unique counted. For each work set a separate file is created. The file names
encode the prefix and the substring length of the data that the file contains, for example
prefix-ac-length-0064.out. These files are all placed in the directory given as argument
to the -a command line option. If this directory does not yet exist, it will be created. The file
format of these output files is simple:

• (4 bytes) number of array elements in this file; say n.

• (n times 4 bytes) unsigned int values encoding offsets of substrings into the DNA data
of the binary genome file that has been processed.

• (n times 1 byte) char values encoding whether or not the offset points to a substring in
the reverse complement. A value of zero means the offset points to the normal strand,
a value of one to the reverse complement strand.

24

A.2 MPI-based version

The MPI counterpart supports less options, all three work exactly the same way as described
above:

-i file to process

-l length of substrings to be extracted (default=15)

-a output suffix array files in directory

During the experiments, we have placed the binary file to process on a file system that is
shared between all cluster nodes. Alternatively, this file could be placed on the local hard
drives of all nodes, as long as the path to the file is the same on each node. The same holds
for the -a option.

Due to the usage of a different work distribution algorithm, as described in Section 4.1.1,
the MPI version lacks an option for specifying the prefix length. The program will determine
an appropriate prefix length itself, based on the number of available nodes.

This program should be run through the mpirun command or through specific start-up
scripts of your cluster environment. Please refer to the manual of your local installation of
MPI and/or your cluster site for more information.

25

