Jorix kernel: real-time scheduling

Joris Huizer Kwie Min Wong

May 16, 2007

1 Introduction

As a specialized part of the kernel, we implemented two real-time scheduling
algorithms: RM (rate monotonic) and EDF (earliest deadline first)

A real-time scheduling algorithm is defined in terms of periods and sys-
tem times. A real-time task is some program (a process or a thread) which
periodically needs to do some work. An example is a task that has to re-
spond to scanner input which comes to the system periodically, and needs to
be handled. An important property in this kind of task is a loop of waiting
for input and timely responding to input.

The system time is the amount of time a task spends dealing with one
cycle. A period of a task has to be known to the scheduler, and it is the
maximum system time the task may use.

1.1 Rate Monotonic

The rate monotonic algorithm assigns fixed priorities to tasks. It assigns
higher priorities to tasks with shorter periods. When needing to choose to
schedule a task, the one with the highest priority available is chosen, but of
course a task that was run already in the current period cannot be chosen.

The rate monotonic algorithm forces the scheduling to be preemptive,
meaning that processes are interrupted to allow other processes (with higher
priorities) to run before continuing the other (with a lower priority).

RM is known to be optimal, in the sence that it is at least as good as any
other real-time algorithm using fixed priorities.

The fixed priorities nature of RM means it can be implemented in hard-
ware.

It is not trivial to see whether a given set of tasks can be scheduled by
RM. A known guarentee about RM is: for n processes, the worst-case schedule
bound is

W, =nx (27 — 1)

This means, if the total sum of CPU usage of all processes exceeds W,,, there
is no guarentee RM will be able to schedule the processes correctly (without
missing deadlines).

This property was proven by Liu and Layland in 1973.

1.2 Earliest Deadline First

The earliest deadline first algorithm does not fix priorities; instead it looks
at the deadlines of tasks; the task nearest to it’s deadline gets executed.
EDF is known to be optimal, in the sense that, if a task set is schedulable,
it will be schedulable by EDF.
For process ¢, C; is the service time and 7; is the period of the process.

N .
U:Z%gl

If U is less then 1 the process set is schedulable.
An advantage of EDF over other dynamic priority algorithms is, that the
processor can be fully utilized, without many context switches.

2 Scheduling Environment

Real-time scheduling algorithms have the need to know when to “start” a
task and when to “stop” it. They have to know when a periodic task has
been finished.

In our kernel this has been implemented in the following way; The user
program does some initialisation, executing some “open” system calls. Then
it executes a “read” (or, a “start”) system call, does it’s calculations, and
executes a “write” (or, a “stop”) system call. After the “write” has finished,
another “read” is executed (so this is some kind of loop). Finally the task
exits completely (the program stops).

As you can see, it’s a very simple (and some what restrictive) environment,
but it suits the purpose to test the different scheduling algorithms. “Reads”

struct io_data
{

int fd;

int count;

s
Figure 1: File descriptor

and “writes” don’t really change files, as our kernel does not have a real file
system implementation.

2.1 Process Creation

During process creation (the fork system call), the process gets stored in
the list of processes, which is used by the scheduler. This happens by calling
scheduleProcess.

A call to schedulePriorityChanged tells whether rescheduling is needed;
If there is a need, a special startProcess call will tell the scheduler to
actually reschedule. This function returns a value which is to be stored in
the TSS back link field.

2.2 File Descriptor

We have an extremely simple file descriptor, as shown in figure 1.

In Unix-like environments, a file is represented by an integer - this is the
fd field. The only other field is the count, which is a number containing the
number of reads can be executed on the file (the number of bytes).

The number of writes on a file is not limited so this number is irrelevant
for written files.

2.3 Open System Call

Like on linux, our “open” system call requires these register settings:
e EAX is set to 5.

e EBX is set to a string, the name of the file to open.

e ECX is set to the corresponding flags, which tell whether to open a file
for reading or writing.

e EDX is set to the mode (the permissions to use when creating a new
file)

In our implementation, for a “read”:

e EBX must be set to “/tmp/sensor”.

e ECX must have the standard 0_RDONLY value set (value 0).
In our implementation, for a “write”:

e EBX must be set to “/tmp/out”.

e ECX must have the standard 0_WRONLY value set (value 1).

2.4 Read System Call

Like on linux, our “read” system call requires these register settings:
e EAX is set to 3.
e EBX is set to a file descriptor, given by the open system call.
e ECX is set to a user buffer which is to be filled.
e EDX is set to size of the user buffer.

As there isn’t really a file to read data from, the buffer gets filled with
random data.

The purpose of executing the read system call in our kernel is to tell the
scheduler to “start” a cycle of the task loop. After setting up the buffer, a
scheduling function restart_process is called.

2.5 Write System Call

Like on linux, our “write” system call requires these register settings:
e EAX is set to 4.

e EBX is set to a file descriptor, given by the open system call.

4

e ECX is set to a user buffer which is to be written to the file.
e EDX is set to size of the user buffer.

As there isn’t really a file to read data from, the buffer is completely
ignored.

The purpose of executing the write system call in our kernel is to tell
the scheduler to “stop” a cycle of the task loop. After setting up the buffer,
a scheduling function halt_cycle_process is called.

3 Scheduling Interface

We wrote two real-time scheduler implementations, with a common interface.
There are two kinds of functions:

e timer oriented functions

e process oriented functions

3.1 Timer Oriented Functions

The timer oriented functions give an interface to execute a function after
a certain amount of “ticks” (the duration of one “tick” is dependent on
initialization of the timer hardware) The following functions have been im-
plemented:

e addTimer

e deleteTimer

e resetTimer (a macro function)
e timer_handler

The timer functions are used by both scheduling algorithms.

typedef void (*timerHandler) (void *ptr);
typedef struct timer

{
unsigned long int delay;
timerHandler handler;
void *ptr;
char isNew;

} timer;

Figure 2: Timer descriptor

3.1.1 Timer Description

The timer structure as used by timer oriented functions is defined as figure
2 shows.

delay is the number of ticks till execution
handler is the callback function to call when delay becomes zero
ptr is the pointer to give as an argument to the callback function

isNew is a marker field: it should be 0 except when the timer gets “reset”,
when it becomes 1.

3.1.2 addTimer

The addTimer function adds the given timer to the array of timers, if there
is still place left. It makes sure the array stays sorted on delay, such that the
timer with the shortest delay is the first timer in the array.

3.1.3 deleteTimer

The deleteTimer function removes the given timer from the array of timer,
if it can be found. Like the addTimer function it ensures the array stays
sorted.

3.1.4 resetTimer

The resetTimer macro function gets two arguments: the timer to “reset”
and the delay to use (this may be a completely different delay than the
previously used value) It sets the delay, marks the timer to indicate it’s a
resetted timer, and adds the timer using addTimer.

3.1.5 timer_handler

The timer_handler function increments the global timer_ticks variable,
which hold the current number amount of “ticks” between kernel boot and
Now.

It decrements every timer delay in the array, and calls a timer func-
tion, when it’s delay reaches zero. It is careful not to decrement resetted
timers, and it will mark resetted timers as normal timers for the next call to
timer_handler.

A periodically called service is required to reinstall itself each time it’s
function gets called, and it can use the resetTimer function for this. Im-
plemented like this, there isn’t anything special about a periodically called
service.

After decrementing timers, any old timer (of which the delay went to
zero) is removed from the list.

3.2 Process Oriented Functions

The process oriented functions tell the scheduler to restart a process or to
choose a new process to schedule.

e scheduleProcess

e scheduler

® restart_process

e halt_cycle_process
e startProcess

o deleteProcess

e schedulePriorityChanged

Processes can have the following states:

running when the task is active.
died when the task has finished completely.
waiting_io when the task is waiting for I/O (currently not used).
waiting_sys when the task is waiting to be scheduled for the current period.

waiting_next when the task is waiting to be scheduled for the next period.

3.2.1 scheduleProcess

The scheduleProcess function is called to correctly add a given process to
the array of processes. Details are dependant on the scheduling implementa-
tion.

3.2.2 scheduler

The scheduler function is called to choose a new process to be scheduled.
It chooses the new process, which has to have a state running (avoiding
choosing the idle task if possible). Then it updates the TSS descriptor to
hold the process address. Finaly it returns the TSS selector to the caller.

3.2.3 restart_process

The restart_process function is called to tell the scheduler the next itera-
tion of the user task loop starts. The scheduler does bookkeeping dependent
on the implementation.

3.2.4 halt_cycle_process

The halt_cycle_process function is called to tell the scheduler the current
user task loop ends. The scheduler will select the next task to run, depending
on the implementation.

3.2.5 startProcess

The startProcess function is to be called directly after a fork created a
new process, if schedulePriorityChanged returned true, or in case only the
idle task is running.

3.2.6 deleteProcess

The deleteProcess function gets called when the exit system call gets exe-
cuted. It does whatever is necessary to schedule another process and removes
the given process from the process array.

If the last process has executed an exit, the number of deadline misses
is printed per process.

3.2.7 schedulePriorityChanged

The function schedulePriorityChanged indicates after process creation
whether rescheduling is required.

4 Rate monotonic implementation

The rate monotonic implementation works as follows:

e when a task cycle is started, the startTick field of the process is
updated to the current timer_ticks value.

e when a task cycle is stopped, the state field is set to waiting_next.
The next process gets selected and scheduled.

e when the period of the process, has elapsed, the timer callback,
rescheduleHandler, gets called. It performs the following actions:

1. it checks whether the process is in the waiting_next state. It will
set the state field to waiting_sys if this is the case. If it is not,
it means the process has not done all its work yet and it missed
its deadline. A miss will be remembered.

2. If the process is the first process, it gets restarted immediately
(meaning it stops the previously active process).

e the timer for the next period is setup.

When a process gets selected, a check is done whether it missed its dead-
line.

4.1 scheduleProcess

The function scheduleProcess takes a new process which has to be taken
into account by the scheduling algorithm.

It will first cleanup the process array, such that any NULL entry is removed,
and then adds the given process to the array.

It indicates that a priority changed if the process is to be scheduled for
execution immediately. This is true if it currently has the highest priority.

The function ensures the process array stays sorted, as the rest of the
algorithm assumes it is sorted.

4.2 restart_process

The function restart_process just updates the startTick field of the pro-
cess structure to the current timer_ticks value.

4.3 selectNextProcess

The function selectNextProcess loops over the available processes. If it
finds a process with the waiting_sys state, it returns that process. Otherwise
it will return a NULL pointer. The next scheduler call will in this case select
the idle task.

4.4 request_schedule

The function request_schedule calls selectNextProcess to select the next
process with the highest priority, which has not run in the current period.

Then it calls the scheduler () function and stores the returned TSS de-
scriptor in the int_tss back link.

4.5 halt_cycle_process

The function halt_cycle_process takes a process pointer as an argument. It
sets the state field to waiting_next, which indicates that the process won’t
run untill it’s new period begins. Then the function request_schedule is
called to schedule another process for execution.

10

5 Earliest Deadline First Implementation

The earliest deadline first implementation works as follows.
e when a task cycle is started, a number of things happen.

1. The process struct has a special field periodCount which indicates
in which period number the process started. When the value is
incorrect, a miss is remembered.

2. The startTick field of the process is updated to the current
timer_ticks value.

3. The periodCount is updated.
e when a task cycle is stopped, the state field is set to waiting_next.
The next process gets selected and scheduled. The periodCount is

checked, and misses are remembered. The periodCount is updated if
necessary.

e when the period of the process, has elapsed, the timer callback,
rescheduleHandler, gets called. It will schedule a process if currently
the idle task is active; otherwise, no scheduling will happen, meaning
our EDF implementation is not preemptive.

The timer will always get re-installed.

5.1 getProcessDeadline

The function getProcessDeadline takes a process pointer and returns its
current deadline.
The deadline of process; is calculated by:

deadline; = period; — T mod period;

Here 7 is the current time, the current amount of ticks.

5.2 selectProcessByEDF

The function selectProcessByEDF finds the process that has to be sched-
uled, according to the EDF algorithm.

11

It will loop over the array of processes, and for every process that can be
selected, any process in the waiting_sys or the running state, it calculates
the priority, using getProcessDeadline. Finally it returns the process that
has the earliest deadline.

5.3 scheduleProcess

The function scheduleProcess takes a new process which has to be taken
into account by the scheduling algorithm.

The scheduling fields of process structure are initialised. The state is set
to waiting_sys and a timer gets installed, such that at the end of the period,
the process may be restarted.

A check is performed by calling selectPocessByEDF() and the boolean
value priorityChanged is updated. If the selected process is not the current
one, a priority change occurred.

5.4 restart_process

The function restart_process does a number of things:

1. It checks whether the process missed a deadline, and updates the miss
counter if this is the case

2. Tt updates the startTick field of the process structure to the current
timer_ticks value.

3. It updates the periodCount field to indicate a new period has started.

5.5 request_schedule

In the silent implementation, this just calls selectProcessByEDF. In the
verbose version it will print output if no new process was selected, as none
of the periods could be restarted.

This is the case if all the processes have done the work for the current
period, and no new period has started.

12

5.6 halt_cycle_process

The function halt_cycle_process takes a process pointer as an argument.
It does a number of things:

1. It checks whether the process missed a deadline, and updates the miss
counter if this is the case

2. It updates the state to waiting_next.

3. It calls request_schedule and then calls scheduler to schedule a new
process.

4. Tt updates the periodCount field to the current value, using the fol-
lowing formula:

periodCount; = :
period;

Here 7 is the current time, the current amount of ticks.

6 Test Results

We will describe some test results, a process is described as T1 : (1,4) where
T1 is just a name, the 1 means it’s (maximum) amount of time the process is
using CPU, and 4 is it’s period; Both numbers are expressed in ’ticks’ (which
are fired by the hardware timer).

Because of a low CPU speed in the emulated environment of Bochs, all
periods and system times are around hundred ticks, or above this number.

We found a lot of printing output causes delays - even such delays that
timer problems occur - the CPU getting a new timer interrupt while the
previous timer interrupt is still finishing; This results in a GPF (general
protection fault, interrupt 13). Therefor we removed all output prints for the
actual tests.

Dead line misses are reported in this way:

zly/z

x is the number of misses for the first process, y the number for the second
process, and z is the number for the third process.

13

6.1 RM Test Results

Some tests results of RM with three processes are shown in table 1.

P1 P2 P3 load | missed
T1(100,200) | T2(100,600) | T3(100,1000) | 0.767 | 0/0/0
T1(100,300) | T2(100,400) | T3(100,600) | 0.750 | 0/0/0
T1(100,300) | T2(100,400) | T3(500,3000) | 0.750 | 0/0/0
T1(100,300) | T2(100,400) | T3(500,1700) | 0.877 | 0/0/0
T1(100,400) | T2(200,600) | T3(500,1700) | 0.877 | 0/0/0
T1(100,400) | T2(200,600) | T3(500,1800) | 0.861 | 0/0/0
T1(100,400) | T2(200,600) | T3(500,1900) | 0.846 | 0/0/0
T1(100,400) | T2(200,600) | T3(500,2000) | 0.833 | 0/0/0
T1(100,400) | T2(170,400) | T3(100,800) | 0.800 | 0/0/0
T1(190,400) | T2(100,400) | T3(100,800) | 0.850 | 0/0/0
T1(100,300) | T2(100,400) | T3(300,800) | 0.958 [0/0/12
T1(100,300) | T2(100,400) | T3(300,800) | 0.958 | 0/0/12
T1(200,600) | T2(300,600) | T3(100,700) | 0.976 | 0/0/43
T1(100,600) | T2(200,600) | T3(300,600) | 1.000 [0/0/50
T1(100,500) | T2(200,600) | T3(300,600) | 1.033 | 0/8/42
T1(100,300) | T2(100,300) | T3(100,400) | 0.917 [0/0/25
T1(100,300) | T2(100,300) | T3(100,300) | 1.000 | 0/0/50
T1(100,200) | T2(100,300) | T3(100,700) | 0.976 | 0/33/0
T1(100,200) | T2(100,300) | T3(100,600) | 1.000 | 0/33/0
T1(100,1000) | T2(300,1000) | T3(500,1000) | 0.900 | 0/0/0
T1(190,1000) | T2(300,1000) | T3(500,1000) | 0.990 | 0/0/1
T1(200,400) | T2(190,1000) | T3(300,1000) | 0.990 | 0/0/1
T1(100,200) | T2(190,1000) | T3(300,1000) | 0.990 | 0/0/0

Table 1: RM test results

The 0/0/1 entries must be caused by starting delays, as a fork and an
execve call take some time.

In general, it is hard to see whether a set of processes will be correctly
scheduled. In many cases the theoretical W), is exceeded but no misses occur.

14

6.2 EDF test results

Some tests results of EDF with three processes are shown in table 2.

P1 P2 P3 load | missed
T1(100,200) | T2(100,600) | T3(100,1000) | 0.767 | 0/0/0
T1(100,300) | T2(100,400) | T3(100,600) | 0.750 | 0/0/0
T1(100,300) | T2(100,400) | T3(500,3000) | 0.750 | 0/0/0
T1(100,300) | T2(100,400) | T3(500,1700) | 0.877 | 0/0/0
T1(100,400) | T2(200,600) | T3(500,1700) | 0.877 | 0/0/0
T1(100,400) | T2(200,600) | T3(500,1800) | 0.861 | 0/0/0
T1(100,400) | T2(200,600) | T3(500,1900) | 0.846 | 0/0/0
T1(100,400) | T2(200,600) | T3(500,2000) | 0.833 | 0/0/0
T1(170,400) | T2(100,400) | T3(100,800) | 0.800 | 0/0/0
T1(190,400) | T2(100,400) | T3(100,800) | 0.850 | 0/0/0
T1(100,300) | T2(100,400) | T3(300,800) | 0.958 | 0/0/0
T1(100,300) | T2(100,400) | T3(300,800) | 0.958 | 0/0/0
T1(200,600) | T2(300,600) | T3(100,700) | 0.976 | 0/0/0
T1(100,600) | T2(200,600) | T3(300,600) | 1.000 | 0/0/0
T1(100,500) | T2(200,600) | T3(300,600) | 1.033 |9/0/3
T1(100,300) | T2(100,300) | T3(100,400) | 0.917 | 0/0/0
T1(100,300) | T2(100,300) | T3(100,300) | 1.000 | 0/0/0
T1(100,200) | T2(100,300) | T3(100,700) | 0.976 | 0/0/0
T1(100,200) | T2(100,300) | T3(100,600) | 1.000 | 0/0/0
T1(100,1000) | T2(300,1000) | T3(500,1000) | 0.900 | 0/0/0
T1(190,1000) | T2(300,1000) | T3(500,1000) | 0.990 | 0/0/0
T1(200,400) | T2(190,1000) | T3(300,1000) | 0.990 | 0/0/0
T1(100,200) | T2(190,1000) | T3(300,1000) | 0.990 | 0/0/0

Table 2: EDF test results

The 0/0/1 entry must be caused by starting delays.

Our EDF implementation has preemption. Preemption is required to solve
the following problem: One process has a very long service time (and a very
long period), and whenever it gets scheduled, other processes would start
missing deadlines, if they wouldn’t get rescheduled.

15

7 Reference

http://www.embedded.com/story/OEG20020221S0089
http:/ /hartik.sssup.it/ lipari/rtos/lucidi/edf.pdf

16

