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Abstract

When designing embedded systems, one needs to make decisions con-
cerning the different components that will be included in a microprocessor.
An important issue in this phase is the chip area vs. performance trade-
off. In this paper we investigate the relationship between chip area and
performance for superscalar microprocessors. We evaluate how one can
obtain a suitable configuration by using an approach that is based on it-
erative compilation. It turns out that our approach returns a reasonably
suitable configuration after a few hundred iterations. We investigate if this
approach is feasible enough to be used in practice.

1 Introduction

Current embedded systems require high performance. Therefore, several current
and many future embedded processors are out-of-order or even simultaneous
multithreaded [1]. A drawback of these types of processors is that they con-
sume much silicon area because of the complicated control structures required
to support out-of-order execution [2]. For several reasons (both economical and
practical) one always strives for a microprocessor that yields maximum perfor-
mance, but has a small area. If there is plenty of space in the intended system,
one might conclude that there is no urgent need to minimize the chip area.
Unfortunately, often the available area is restricted due to cost constraints.
Therefore, the designer needs to distribute the available area among the several
components (like caches, branch predictor, arithmetical units, . . . ) in such a way
that a maximum performance will be obtained. For general purpose processors,
it is very difficult to find a suitable configuration. In the case of an embedded
processor however, which only runs a limited set of applications, it may be pos-
sible to select a restricted set of resources in such a way that high performance
is still achieved.

Furthermore, microprocessors with a large area might suffer from larger de-
lays because it will take more time to send a signal from one location on the chip
to another. Thus, designers could be forced to have the microprocessor run at
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a lower clockspeed, in order to provide enough time for the transport of signals
across the chip. In general, one wants to avoid these kinds of situations.

Each component has a different effect on the final performance. Further-
more, there exist dependencies between the several components. For example,
increasing the number of arithmetical units will not increase performance, un-
less multiple instructions can be executed in parallel. It requires quite some
analysis to find all dependencies between the various components and the list
of dependencies quickly becomes complex. Therefore, it is quite possible that
a human designer overlooks the effect of one or more interactions between cer-
tain components. In that case, a proposed configuration will probably not be an
optimal one.

In this paper, we discuss a different approach for finding a suitable out-
of-order processor configuration that is small, but powerful enough for specific
applications. This approach, which is discussed in Section 2, is based on the
technique of “iterative compilation” [4], in particular, the variant of iterative
compilation in which randomness plays an important role. This makes an auto-
matic search for good processor configurations possible. In Section 3, we describe
the experiments we have performed with this new approach, and Section 4 con-
tains the results of these experiments. In Section 5, we discuss these results. In
Section 6, we mention some possible directions for future work and in Section 7,
we discuss some related work that deals with design space exploration. Finally,
Section 8 summarizes this paper.

2 Background

As we show in Section 3.3, even with a relatively small amount of possible design
options (from now on referred to as tuning parameters), the search space is
huge. Evaluating all possible combinations of the tuning parameters accurately,
by using cycle-by-cycle simulation with several target applications, would take
about seven centuries for a single Pentium 4 at 2.8 GHz. So we obviously need
another approach.

In the domain of compiler optimization, a technique called iterative compila-
tion has been developed in order to find optimal values for various optimization
parameters [3, 4]. This is done by selecting a value for each parameter, which
can be done randomly or by using a more “intelligent” approach like a genetic
algorithm. Some other possible approaches are discussed in [3]. Next, the iter-
ative compilation algorithm compiles a source program with these parameter
values, executes it and measures its execution time. This process is repeated a
number of times, with or without using the measured execution time as feedback
for the parameter selection. Finally, the set of parameter values that leads to
the shortest execution time is returned. Iterative compilation performs surpris-
ingly well: in a reasonable amount of time, a level of optimization is found that
performs better than well-known analytical techniques do [5].

We want to apply this principle of iterative compilation, that is, searching
for optimal parameter values instead of computing them by analytical means, to
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the problem of selecting the most optimal parameter values for a processor con-
figuration. Parameter value selection can be done in the same way, i.e., random,
or by using a more sophisticated approach. The evaluation of a configuration
consists of two parts. First, one has to obtain a performance measurement of
the configuration. Fortunately, this can be done using software simulation, so it
is not necessary to produce a real physical version of the proposed processor.
Otherwise this approach would become quite expensive if one wants to per-
form more than a few iterations of the algorithm. Second, one has to obtain
the physical area or at least a heuristic estimate of it. Again, the most accurate
but also most expensive method is to actually manufacture each processor that
the algorithm proposes. Obviously, this is too expensive and time consuming
to be feasible. However, for our purpose, a model which estimates the area is
sufficient.

3 Experimental Setup

In this section we discuss how we generate configurations, how performance is
measured, the parameters of our experiments and the area model that is being
used.

3.1 Search Algorithm

The search algorithm we use in our experiments is the most basic one available:
we randomly generate a set of 1000 configurations (without duplicates) using
different tuning parameters and then measure the performance and calculate
the area of each configuration.

In Section 4.3, we show how the search algorithm can be modified, by per-
forming the simulation step only when a certain area constraint is satisfied.

3.2 Performance Simulations

To evaluate the performance of each configuration, we use the SimpleScalar Tool
Set [7]. This tool set offers several simulators, ranging from a simple functional
simulator to a detailed out-of-order issue superscalar processor simulator. The
latter includes (among other features) support for two cache layers and a branch
predictor. We use the out-of-order simulator, since that simulator offers the
largest amount of configurable processor parameters.

The SimpleScalar out-of-order simulator (sim-outorder) first takes a series
of architecture parameters and a binary executable (together with a command
line for this executable) as input. Next, it runs the application on a virtual
out-of-order issue superscalar processor. This is achieved by simulating each
individual cycle, thus maintaining the state of each component during the ex-
ecution of the application. Hence, performing a simulation is a very compute
intensive job.
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After the executable has been simulated, SimpleScalar reports several exe-
cution statistics. These include the total simulation time in cycles, in which we
are interested most.

The SimpleScalar simulator supports several instruction set architectures.
We use the PISA architecture, which is similar to a MIPS instruction set ar-
chitecture. Our main reason for this choice is the fact that the PISA-support is
already part of the SimpleScalar package. Furthermore, PISA binaries for the
intended benchmarks appear to be easier to obtain.

When performing a simulation, SimpleScalar executes the code of a binary
executable that is compiled for the appropriate instruction set architecture. We
use two applications for our experiments, ijpeg and mpeg2dec. The first is
part of the SPEC CINT95 Benchmark collection [8] and performs compression
and decompression of in-memory images. The latter is developed by the MPEG
Software Simulation Group [9] and decodes an MPEG-2 movie. Both of these
programs rely heavily on integer calculations and scarcely on floating point
operations. Therefore, we keep the number of floating point arithmetical units
constant throughout the experiments. The ijpeg-simulation accounts for a total
of about 1.1×109 instructions. The mpeg2dec-simulation results in about 1.3×
108 instructions.

3.3 Parameters

We have selected the following tuning parameters. In an iteration a value from
the matching parameter value set is assigned to each parameter.

• Register Update Unit (RUU) size: the number of slots available in the
RUU, the unit that controls the out-of-order execution. The RUU system
combines register renaming, reservation stations and reorder buffers into
a centralized structure. For each instruction, a new entry (containing in-
formation like associated functional unit, source and destination operand
contents and status data) is put into a free slot of the RUU. In general,
this entry persists until the instruction commits. During its existence, the
RUU entry is being updated whenever relevant data (e.g., source operand
values or execution results) becomes available or status changes occur.
We use 7 values: { 2, 4, 8, 16, 32, 64, 128 }

• Data cache size: the size, in bytes, of the first level data cache. We use
a direct mapped cache, with a blocksize of 32 bytes.
We use 6 values: { 1024, 2048, 4096, 8192, 16384, 32768 }

• Instruction cache size: the size, in bytes, of the first level instruction
cache. We use a direct mapped cache, with a blocksize of 32 bytes.
We use 6 values: { 1024, 2048, 4096, 8192, 16384, 32768 }

• GShare branch predictor size: the branch predictor enables specula-
tive execution, thereby contributing to the efficiency of out-of-order exe-
cution. We use GShare, a global branch prediction scheme [10]. A GShare
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branch predictor consists of a w bits wide shift register (the global history
register, containing the history of the w most recently executed branches)
and a table containing 2w bimodal counters. To obtain a prediction for a
branch, a table entry is chosen by taking (some bits of) the branch address,
XORed with the global history register. The size of the branch predictor
is specified by stating the number of entries in the table.
We use 5 values: { 512, 1024, 2048, 4096, 8192 }

• Branch Target Buffer (BTB) size: the maximum number of entries in
the BTB. The BTB stores the predicted address for the next instruction
that has to be fetched after a branch. With a BTB, the processor is able
to fetch the next instruction at an earlier stage in the pipeline and hence,
the branch penalty can be reduced.
We use 6 values: { 1, 64, 128, 256, 512, 1024 }

• Number of integer ALUs: the number of integer Arithmetic Logic Units
available. The more ALUs available, the more arithmetical and logical
operations can be done in parallel (provided that no data hazards occur;
this is handled by the out-of-order control logic).
We use 5 values: { 1, 2, 3, 4, 5 }

• Number of memory ports: the number of ports available to the CPU
to access the first level cache. With additional memory ports, the system
memory can be accessed simultaneously by multiple functional units.
We use 4 values: { 1, 2, 3, 4 }

• Instruction issue width: the maximum number of instructions that can
be issued (i.e., moved from the instruction decode stage to the execution
stage) during a cycle.
We use 3 values: { 2, 4, 8 }

• Instruction fetch queue size: the maximum number of instructions
that can be stored in the fetch queue. During the instruction fetch stage,
instructions are transferred from the instruction cache or the system mem-
ory into the fetch queue.
We use 5 values: { 1, 2, 4, 8, 16 }

• Load/Store Queue (LSQ) size: the LSQ supports the RUU during all
load and store instructions (i.e., instructions that access memory). The
RUU still handles execution control and performs the effective address
calculation. The LSQ handles the actual memory communication and con-
tains a mechanism that avoids data hazards.
We use 4 values: { 2, 4, 8, 16 }

All other possible architecture parameters remain constant throughout the ex-
periment and are set at the SimpleScalar default values. With this set of pa-
rameters, about nine million different configurations are possible.
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3.4 Area Model

To obtain an estimate of the area of a particular processor configuration, we
use a slightly extended version of the model proposed by Marc Steinhaus et
al. [6]. This model provides an area estimate for a superscalar microprocessor
design, specified using a SimpleScalar configuration. Using analytical and em-
perical models, the number of transistors and the chip area is estimated. Chip
area is expressed in λ2 in order to get a quantity that is independent of the tech-
nology used to manufacture the microprocessor. Here, λ is defined as half of the
minimum feature size (which is the size of the smallest transistor, interconnect,
etc. that can be produced using a certain manufacturing process).

Unfortunately, the model only provides an estimate for bimodal branch pre-
dictors, while we use a GShare branch predictor. Therefore we have extended
the model. For the exact details concerning the several assumptions and formu-
las we refer to [6]. However, our explanation about the extension of the model
should provide enough detail to get a satisfying understanding of the entire
model.

Essentially, the GShare branch predictor is just another set of (multiport)
SRAM cells, much like a Branch Target Buffer. For simplicity, we ignore the
small amount of additional control logic required. Thus extending the model is
done by applying the same techniques that are used for this component, with the
difference that the GShare predictor consists of one table and a history register.

To obtain the entire area of a branch predictor, the number of bits used in
the predictor is multiplied by the area (which equals height times width) of a
single SRAM cell:

AreaBpred = BitPerBpred ·BpredCellHght ·BpredCellWid

The variable BitPerBpred specifies the number of bits contained in the entire
predictor. The number of bits in a GShare predictor, with a shift register width
of W bits and 2W entries in the bimodal table, can be expressed by:

BitPerBpred = W + 2 · 2W = W + 2W+1

Next, we need to calculate the dimensions BpredCellWid and BpredCellHght
of a single SRAM cell. In the model we use, a SRAM cell without any wires
connected to it has a basic width and height, called SRCellBasicWidInLam
and SRCellBasicHghtInLam, respectively. Two types of wires have to be con-
nected: data wires, which transfer the data that has been read or has to be
written, and address wires, which signal whether the cell is selected for an op-
eration or not. Steinhaus et al. [6] have chosen to connect all address wires to
the smaller side of the cell, that is, connect them to the side designated by
BpredCellHght, and all data wires to the broader side (i.e., BpredCellWid).
The number of address and data wires depends on the number of read and write
ports. Both a read port and a write port require one address wire, so the height
of a single SRAM cell of the GShare branch predictor equals:
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BpredCellHght = SRCellBasicHghtInLam+
(BpredReadPort+BpredWrtPort) ·WtWidInLam

Nearly the same applies to the width of a single SRAM cell, except that we
should look at data wires instead of address wires. A read port requires one
data wire, while a write port requires two data wires. The leads to:

BpredCellWid = SRCellBasicWidInLam+
(BpredReadPort+ 2 ·BpredWrtPort) ·WtWidInLam

In both formulas, WtWidInLam represents the width in λ needed for a sin-
gle data or address wire. BpredReadPort and BpredWrtPort represent the
number of read and write ports of the SRAM cell, respectively. Since the max-
imum number of read and write ports required during a cycle depends on the
maximum number of instructions that can be fetched simultaneously, it is made
equal to the instruction fetch width:

BpredReadPort = BpredWrtPort = FetchWidth

With this extension added to the original model, we obtain a suitable area
estimation model for our experiment.

The authors of the original area model also developed a Microsoft Excel
spreadsheet which allows one to enter the various SimpleScalar configuration
parameters. All calculations are then performed automatically and one can im-
mediately view the estimations of transistor count and chip area.

In order to get a tool which is more practical in an iterative search Unix-
environment, we developed a small C-program that performs these estimations.
This tool, called sim-area, has roughly the same commandline interface as
the original SimpleScalar simulator: all configuration parameters that appear in
sim-outorder (the out-of-order execution simulator of SimpleScalar), are also
supported by our tool using exactly the same syntax.

4 Results

In this section, we show the results of the experiments we described in the
previous section.

4.1 Simulation Results

First, we generated 1000 unique parameter sets. After running 1000 performance
simulations for both the ijpeg benchmark and the mpeg2dec benchmark, we
produced the plots of Figure 1. The x-axis represents the simulation number,
which correspronds to a single configuration. The y-axis shows the performance,
which is calculated by:

performance =
1

number of cycles needed for the simulation
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Figure 1: Distribution of performance simulations
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We also executed four additional simulations for each benchmark, which are
plotted using horizontal lines. First, we determined the performance for the min-
imum and maximum configuration, by selecting the smallest and largest values,
respectively, for each tuning parameter. These are called “reachable minimum”
and “reachable maximum”. Next, we determined the absolute lower bound al-
lowed by SimpleScalar by selecting the minimum value for each tuning param-
eter. Finally, we determined an estimate of the upper bound by selecting huge
values for each tuning parameter. These values are listed in Table 1.

Register Update Unit size: 2048 slots
Data cache size: 16 Megabytes
Instruction cache size: 16 Megabytes
GShare branch predictor size: 524288 entries
Branch target buffer size: 524288 entries
Number of integer ALUs: 8 (SimpleScalar maximum)
Number of memory ports: 8 (SimpleScalar maximum)
Instruction issue width: 64 instructions per cycle
Instruction fetch queue size: 64 instructions
Load/Store Queue size: 1024 entries

Table 1: Parameters for an estimate of the upper bound.

It becomes clear that there is a difference in performance between the mini-
mum reachable and maximum reachable configurations of about a factor of five.
Compared to this, the difference between the reachable minimum and the Sim-
pleScalar minimum is quite small. The same applies to the difference between
the reachable maximum and a huge SimpleScalar configuration. Thus, the value
sets we have chosen for the tuning parameters cover a broad range of the search
space.

Both plots show quite an identical pattern, with the majority of the config-
urations located below two times the performance of the reachable minimum.
However, there are some differences when looking at certain individual configu-
rations. Some (e.g., configurations 1 and 2 in Table 2) have a high performance
for the ijpeg benchmark while that same configuration does not perform as well
as in the mpeg2dec simulation, although the performance still lies above the av-
erage. Interestingly, this hardly holds conversely. Configurations that perform
well for the mpeg2dec benchmark are also among the best performing config-
urations of ijpeg (e.g., configurations 3 and 4 of Table 2). For the particular
configurations given in this table, it seems the lower performance of configura-
tions 1 and 2 for the mpeg2dec benchmark is caused by their smaller instruction
cache. However, without any further investigation, one may not conclude this is
true for all configurations.
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Parameter Conf. 1 Conf. 2 Conf. 3 Conf. 4
Register Update Unit size 64 32 128 64
Data cache size (bytes) 16384 32768 8192 8192
Instruction cache size (bytes) 8192 4096 16384 32768
GShare branch predictor size 512 4096 1024 4096
Branch target buffer size 1024 128 256 64
Number of integer ALUs 3 4 4 3
Number of memory ports 4 3 2 2
Instruction issue width 8 8 8 4
Instruction fetch queue size 4 8 4 8
Load/Store Queue size 16 16 16 16
Area (Mλ2) 35166 27382 20393 19491
ijpeg rank 1st 3rd 2nd 4th
mpeg2dec rank 12th 15th 3rd 2nd

Table 2: Four parameter configurations.

4.2 Area and Performance

Next, we computed the area of each configuration and generated the plots shown
in Figure 2. In both plots, the y-axis ranges from the performance of the reach-
able minimum to the performance of the reachable maximum. The most inter-
esting processor configurations (i.e., processor configurations that perform well
and have a small area) appear in the upper left corner of the plot, while the lower
right corner represents the less interesting configurations that do not perform
well and require a considerable amount of area at the same time.

One immediately notices the four clusters that appear in both plots. These
turn out to be caused by the “number of memory ports” parameter. Each possi-
ble value for this parameter corresponds to a cluster. Since this parameter has a
huge impact on the total area of a configuration, it clearly separates the different
classes. Again note that Figure 2(b) shows less high-performance “peaks” than
Figure 2(a) does, especially when chip area exceeds 22000 Mλ2.

4.3 Gain under Area Restrictions

Finally, we discuss the performance of our iterative approach. Therefore, we
plotted several graphs in Figure 3, with area restrictions ranging from 12000 to
30000 Mλ2. In order to compare both the ijpeg and mpeg2dec results in one
figure, the y-axis contains the “speedup” relative to the minimum configuration.
For a configuration x, this speedup is calculated by:

speedup(x) =
performance(x)

performance(minimum configuration)

A configuration with exactly the same performance as the minimum configu-
ration has a speedup of 1, a configuration that performs twice as well as the
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Figure 2: Area and performance of all simulations
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minimum configuration has a speedup of 2, and so on. The upper limit of the
speedup is 6.4 for the ijpeg simulations and 7.5 for the mpeg2dec simulations.

The plots are produced by iterating over the set of configurations. Once
a configuration is encountered that satisfies the area restriction, it is plotted
as a point in the figure. The two different lines in a figure indicate the best
configuration encountered so far.

At this point, the benefits of our approach become clear. When a configura-
tion is generated, its area is calculated first, which is a relatively cheap operation.
Only if its area satisfies the area requirement, a simulation is performed. For
example, when taking an area limit of 12000 Mλ2 (Figure 3(a)), only 33 sim-
ulations have to be performed, instead of 1000, to find the best configuration
in the set of all configurations. This makes a huge difference in the amount of
simulation time, that is needed to find configurations that satisfy the area re-
striction. In fact, even after only four simulations are performed, the speedup
hardly improves in this particular case. Thus, one might consider to stop the
algorithm after a very small number of simulations.

In Table 3 we compare the speedup against the area of several configura-
tions. The second, fourth and fifth best performing configurations for the ijpeg

benchmark, are only about twice as big as the reachable minimum, but have an
average speedup of 5.5. The first three and fifth best performing configurations
for the mpeg2dec benchmark, are also about twice as big as the reachable mini-
mum and have an average speedup of 6.0. This indicates our iterative approach
is able to find a configuration that performs very well, while the area increase
is relatively small.

Configuration
Speedup

Area (Mλ2)
ijpeg mpeg2dec

Reachable minimum 1.0 1.0 11250
Reachable maximum 6.4 7.5 44539
Minimal SimpleScalar configuration 0.6 0.7 11168
Huge SimpleScalar configuration 7.2 8.5 13764139
Best performing (ijpeg) 5.6 4.9 35166
2nd best performing (ijpeg) 5.6 5.9 20393
3rd best performing (ijpeg) 5.4 4.8 27382
4th best performing (ijpeg) 5.4 6.1 19491
5th best performing (ijpeg) 5.4 6.4 21118
Best performing (mpeg2dec) 5.4 6.4 21118
2nd best performing (mpeg2dec) 5.4 6.1 19491
3rd best performing (mpeg2dec) 5.6 5.9 20393
4th best performing (mpeg2dec) 4.8 5.6 31340
5th best performing (mpeg2dec) 4.4 5.4 22052

Table 3: Speedup and area of several configurations.

In Table 4, for each area limit, the best performing configuration is given.
Particularly for the RUU size and the number of memory ports, a relation-
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ship shows up between the parameter value and the area limit. Configurations
with a small area have a small RUU size and only one memory port. Config-
urations with a larger area have a larger RUU size and two memory ports.
For the mpeg2dec benchmark, a similar relation holds for the instruction cache
size. However, for the ijpeg benchmark, the instruction cache size of the con-
figuration with the smallest area is equal to the instruction cache size of the
configuration with the largest area.

5 Discussion

In this section, we discuss the results that were presented in Section 4. Next, we
evaluate the iterative algorithm applied to the search for optimal microprocessor
configurations.

5.1 Results

The first thing that can be remarked from Figure 2 is that there are only a few
configurations that perform very well. The majority of the configurations tend
to be in the lower half of the graphs. This is caused by the fact that there exist
several dependencies between the different components or tuning parameters.
For example, including five integer ALU’s does not increase performance that
much when the instruction fetch queue size is set to one.

Another thing that can be concluded from the same figure is that the number
of memory ports in a microprocessor has a huge impact on the final chip area:
the effect of all other components is undone nearly entirely when the number of
memory ports is increased by one. This is caused by the amount of additional
wiring and logic needed for each memory port. For example, when the number
of memory ports is increased by one, the load/store queue requires at least one
additional read and write port for each of its SRAM cells. This is because the
LSQ must be able to serve an additional read or write operation during a single
cycle. The area of several other components, like the register file, TLB and
cache, is influenced in a similar manner. However, it seems there is not much to
gain anymore when the number of memory ports is higher than two (note that
we cannot substantiate this conjecture as we did not evaluate all nine million
configurations).

When analyzing the performance simuluation results of each configuration,
we discovered that both caches do not need to be that large for the ijpeg

benchmark. A data cache of 2048 bytes and an instruction cache of 4096 bytes
should be sufficient. For the mpeg2dec benchmark, the same holds for the data
cache, but the preferred instruction cache size turns out to be 32 kilobytes. This
stresses that one should be careful when evaluating simulation data: the micro-
processor configurations that are returned by our approach depend greatly on
the benchmark applications used in the simulation step. It shows how important
it is to chose the right benchmark suite when designing a microprocessor.
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ijpeg

data instr. branch BTB RUU #int. #mem. FQsize Issue LSQ
cache cache pred. ALUs ports width

area ≤ 12000 Mλ2

2048 16384 512 512 16 1 1 2 2 4

area ≤ 13000 Mλ2

2048 8192 2048 512 32 5 1 4 4 16

area ≤ 14000 Mλ2

2048 8192 2048 512 32 5 1 4 4 16

area ≤ 15000 Mλ2

2048 8192 2048 512 32 5 1 4 4 16

area ≤ 17500 Mλ2

32768 16384 512 512 64 3 1 16 8 16

area ≤ 20000 Mλ2

8192 32768 4096 64 64 3 2 8 4 16

area ≤ 25000 Mλ2

8192 16384 1024 256 128 4 2 4 8 16

area ≤ 30000 Mλ2

8192 16384 1024 256 128 4 2 4 8 16

mpeg2dec

data instr. branch BTB RUU #int #mem. FQsize Issue LSQ
cache cache pred. ALUs ports width

area ≤ 12000 Mλ2

1024 2048 512 512 8 5 1 2 2 16

area ≤ 13000 Mλ2

2048 8192 2048 512 32 5 1 4 4 16

area ≤ 14000 Mλ2

2048 32768 1024 128 64 3 1 4 4 8

area ≤ 15000 Mλ2

2048 32768 1024 128 64 3 1 4 4 8

area ≤ 17500 Mλ2

32768 32768 2048 512 32 4 1 16 4 16

area ≤ 20000 Mλ2

8192 32768 4096 64 64 3 2 8 4 16

area ≤ 25000 Mλ2

2048 32768 2048 256 128 5 2 8 4 16

area ≤ 30000 Mλ2

2048 32768 2048 256 128 5 2 8 4 16

Table 4: Configurations found for each area limit
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In general, the RUU size needs to be at least 32 and the BTB size at least 64.
In the best performing configurations, the branch predictor size varies between
the lowest and highest possible values. So it seems this parameter (or the value
set we have chosen for it) does not have a big influence on the performance
in our experiments. For the ijpeg benchmark, the average branch predictor
accuracy is about 89 %. For the mpeg2dec benchmark, the average accuracy is
about 97 %. In general, the accuracy doesn’t deviate more than 1 % from the
average for both benchmarks. The minimum number of integer ALUs that need
to be included turns out to be three for both benchmark applications. The fetch
queue size, issue width and load/store queue size tend to the higher values of
the parameter set for a good performance result (≥ 4, ≥ 4, ≥ 8 respectively).
The only thing in which both benchmarks significantly differ is the fetch queue
size: in general the mpeg2dec benchmark performs slightly better when the fetch
queue size equals eight or sixteen, compared to configurations that have a smaller
fetch queue size.

5.2 Algorithm Evaluation

As can be concluded from the previous two paragraphs, one should carefully con-
sider with which benchmark the performance simulation step has to be done.
The chosen benchmark should reflect the application of the final product closely,
or else one ends up with a microprocessor that is optimized for the wrong pur-
pose.

Figure 3(a) shows that only 33 instead of one thousand simulations are
examined, since the remaining configurations exceed the area limit. Because
we examine a fixed set of 1000 different configurations, only a relatively small
number of configurations is returned by our approach. This is caused by the
fact that, when the area restriction is tight, the number of configurations that
satisfy the restriction is small. However, because of the enormous reduction in
simulation time needed, one can evaluate many more configurations, since the
area calculation step is a very fast operation compared to the simulation step.

Furthermore, while the area limit of 12000 Mλ2 is only slightly more than
the area of the reachable minimum configuration, we still gain a speedup of a
factor of about 2.5. This shows that carefully selecting a few additional resources
can be highly effective. When the area limit is between 13000 and 15000 Mλ2,
speedups of about 4 are already achieved. When a larger area is allowed, the
speedup is about 1.0 below the reachable maximum for each benchmark. This
stresses the effectiveness of our approach.

The plots in Figure 3 show that after about 50 iterations a configuration has
been found that satisfies the area restriction and performs already significantly
better than the minimum configuration. In general, after about 200 iterations a
configuration has been found that will scarcely be exceeded in performance by
a configuration from the set of remaining configurations.

However, an important limitation of our approach is still time. Performing
a single performance simulation requires a lot of computation time. Especially
when one needs a reliable result, the simulation should involve enough cycles to
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correctly represent the intended purpose of the final product. Therefore, finding
configurations with the algorithm we proposed in Section 3.1 still remains quite
a time-consuming task.

6 Future Work

In this section we discuss some future work that deals with our proposed ap-
proach of finding suitable microprocessor configurations.

In the previous sections, we have evaluated the most basic implementation
of the iterative approach, namely, the random generation of parameter values.
The results of the performance simulations are not used for any feedback in the
algorithm. Of course, most of the enhancements that are invented in the domain
of iterative compilation can be applied to our approach as well. We highlight
one particular alternative: the use of a genetic algorithm.

The algorithm starts with a small population of individuals with random
parameter values. The quality (“fitness”) of an individual configuration depends
on two statistics: the performance of the configuration and an estimate of the
chip area. Therefore, the performance : area ratio may provide a suitable
fitness function. Several genetic operators (like mutation and crossover) can be
applied to the individuals of the population, as these are just a set of integer
values. After a number of iterations the algorithm should stop. The population
will hopefully consist of configurations that perform better than the initial set
of parameter values.

Another possible direction in which this research can be extended is by
applying data mining techniques on the obtained data, which consists of the
configurations together with their estimated area and computed performance.
One might discover interesting patterns and dependencies between the different
tuning parameters mutually, and between the parameters and the area. The
results of this kind of analysis can be used to create heuristics in order to decrease
the size of the search space. An example heuristic can restrict the number of
ALUs to the number of instructions that can be fetched simultaneously. Another
heuristic can prevent a configuration from having more LSQ slots than RUU
slots.

Furthermore, one could try to improve the performance simulation step, as
this turns out to be a very compute intensive and therefore time consuming
step. When searching for a processor configuration that has to serve a specific
application, this would not be that hard. But for an all-purpose microprocessor
- like the one of a cell phone, which nowadays has to be able to do image and
video processing, sound recording and playing games, besides handling a phone
call - the performance simulation step might pose a serious restriction on the
number of iterations the algorithm could perform in a reasonable amount of
time. A possible way to improve this, is to use small, but representative inputs
for the benchmark applications used in the simulations. In the next section we
discuss some alternative solutions for the simulation step.
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7 Related Work

Design space exploration has been studied extensively in order to come up with
more efficient microprocessors and to improve the design process. Our approach
is in fact based on the Y-chart approach, which was proposed by Kienhuis et al.
in [11] and further investigated in [12]. In [11], the authors already indicate that
the simulation phase is the bottleneck of the approach: the more efficient this
phase is, the more useful the Y-chart approach will be (since more candidate
designs can be evaluated in reasonable time). Our results clearly agree with this
observation.

Various solutions have been proposed in order to make the performance
analysis step faster. The Artemis project [13, 14] is meant to support the design
of embedded systems. Two different frameworks for the simulation phase are
adopted in this project: Spade [15], which provides a model for (rapid) high
level architecture performance simulations, and Sesame [16], which provides a
method for evaluating designs at multiple abstraction levels. With the latter,
one can specify some of the architecture components at a high level and specify
other components at a lower and more detailed level. In [17, 18], the Sesame
method is investigated more thoroughly; in [19], the mechanisms for calibration
of the Sesame framework are discussed.

Another alternative for the simulation step is to make use of statistical simu-
lations. In [20], several statistical simulation models are evaluated, with different
degrees of detail. Simple statistical models yield an execution time of only a few
seconds. This could be very useful in fast (but less accurate) design space ex-
ploration. In [21], an hybrid analytical-statistical model is presented in order to
support early design stage architecture evaluations. In [22], the statistical simu-
lation approach is investigated more thoroughly, by taking power consumption
and cycle time also into account.

In [23], an analytical approach for determining the parameter configuration
of a cache in an embedded system is discussed. The authors propose a method
that takes a design constraint (e.g., desired number of cache misses) and a trace-
file as input, and outputs a set of optimal cache configuration parameters (in [23]
they limit this set to only two parameters: cache size and degree of associativity;
other parameters are set to a fixed value). This method appears to be much faster
than the traditional exhaustive performance simulations. However, it is a very
complex task to develop an analytical model for each component. Developing
a model for our entire parameter set might be very hard to realize, because of
the amount of different parameters and the various dependencies between the
parameters.

Some effort has been spent on minimizing the parts of the design space
that have to be evaluated. In [24], Haubelt and Teich propose a method for
the synthesis of system configurations using Pareto-Front Arithmetics. This ap-
proach leads to a dramatically reduced exploration time. In [25], a framework
called Model based Integrated simuLAtioN (MILAN) is extended with two tools
(DESERT and HiPerE) in order to speedup the exploration process. These al-
low (among other features) for rapid estimation and optimization of energy
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consumption.
Instead of focussing primarily on alternative architecture instances, it is also

possible to evaluate different target application instances, as described by Ste-
fanov et al. in [26]. With their method, the target application is decomposed
several times in several different concurrent tasks (with a different degree of
exploited task-level parallelism). As stated in [26], the performance of an archi-
tecture can significantly depend on the application instance that is used.

In the same domain of taking the target application into account when de-
siging an embedded system, lies the Compaan-project [27, 28, 29]. Compaan
takes a sequential imperative Matlab program as input and compiles it into a
process network. This concurrent representation provides a better foundation
for exploiting parallelism. According to Rijpkema et al. in [27]:

Novel high-performance, domain specific, embedded architectures
are often composed of a microprocessor, some memory, and a number
of dedicated coprocessors.

These kind of architectures are to be used in video consumer appliances, adap-
tive radar processing and mobile communication devices, as indicated by Kien-
huis et al. in [28]. The Compaan toolset tries to assist designers during the
process of partitioning the target application into hardware and software imple-
mentations.

In [30], the authors investigate an extension to Compaan, called Laura. This
tool takes a process network specification generated by Compaan as input and
transforms it into a design implementation described as synthesizable VHDL.
With this VHDL code the original Matlab program (as provided to Compaan)
can be programmed onto a Field Programmable Gate Array (FPGA) platform.
Stefanov et al. present a system design approach based on the Compaan/Laura
tool chain in [31].

An interesting and completely different proposal is made by Pimentel in [32].
The author pleads for the development of methods that provide assistance by
visualization during the design space exploration process. Pimentel states that
visualization is an important tool in other domains and thus could be useful
in the domain of computer architecture too. However, no concrete methods are
proposed in his paper.

The structure of the approaches described by Eyerman et al. in [33] is very
close to our method. The authors use several search algorithms, including a
random-based algorithm and a genetic search algorithm (we briefly discussed a
proposal of the latter in the previous section). They also use sim-outorder from
the SimpleScalar toolset for the performance simulation step, together with a
tool (called Wattch) that estimates the energy consumption during the simula-
tion. Furthermore they combine the SimpleScalar simulation with a statistical
simulation into a two-phase simulation, in order to prune the design space.

However, most of the methods and approaches discussed in this section do
not take the physical chip area into account (except for [30], where the authors
compare the estimated area of the output of their tool with the area of existing
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IP cores). In general, researchers tend to focus primarily on the performance
(and in some cases also the energy consumption) of the proposed configuration.

8 Conclusion

In this paper we have shown that an iterative approach to the problem of finding
suitable microprocessor configurations works reasonably well. It finds a suitable
configuration (that satisfies a given area restriction) after a relatively small
number of iterations. Furthermore, we have shown that even a small increase in
the resources compared to a minimal configuration can give a speedup of about
2.5, which implies that tuning a processor with our approach can be highly
effective. However, we also found that the approach is quite compute intensive.
Nevertheless, this approach could be quite useful in the field of design space
exploration.
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