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1PrefaeFor the graduation of the bahelor program Computer Siene, I try to useArti�ial Intelligene to solve the game Gin Rummy. Under supervision ofDr. W. A. Kosters, this paper is written in 2006, during the third year of mybahelor program.The main idea behind the use of Arti�ial Intelligene is to make a pro-gram that has a performane lose to good players or even performs betterand faster. And in order to avoid hardode programming, just try to let theprogram \learn" itself.AbstratGin Rummy is a 52-ard game, with not many rules and restritions. Theplayers have lots of freedom to play the game the way they wants to. Usingbrute fore to alulate all possibilities is not an option sine it will osttoo muh time and is pratially not possible. A more lever way has tobe used to handle this problem. The researh question is: Can we reate aompetitive algorithm using a neural network to solve Gin Rummy? In thispaper, we will see what the omplexity is of Gin Rummy and how we aregoing to deal with it using a neural network. We will disuss what the resultsare, and how well the program is doing ompared with skilled human players.Key words: neural network, reinforement, evolutionary learning, o-evolution,Gaussian noise, ross-over.
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1 Introdution and game rules 31 Introdution and game rulesIn this paper, we will see if an arti�ial neural network is suitable for solvingGin Rummy, and if it is suitable, how to use the neural network to solveit. In Setion 1, a short introdution about the history of Gin Rummy willbe given together with a glossary explaining several terms used in the gameand in this paper. Setion 2 is about the omplexity of Gin Rummy. Setion3 explains how a neural network works, how the researh is onduted, andmentionsproblems and solutions during the implementation. Setion 4 givesthe trainings results and �nally we have a disussion in Setion 5.1.1 Gin Rummy game historyAs a game, Gin �rst appeared in the beginning of the 20th entury. GinRummy is a two-player ard game, played with 52 ards. Some redit forthe game is given to Elwood Baker (also a Bridge tutor) who invented GinRummy in New York. He later ahieved muh posthumous fame as a vi-tim of an unexplained murder ase. Only in the thirties of the 20th enturythe game of Gin beame popular, espeially in the Amerian ulture as ginbeame a game of popular Broadway and Hollywood stars and featured inmany movies as well [10℄.The popularity of Gin is due to the fat that the game is quite easyto learn and it is a rather fast-paed game as well. The earliest form of theGin Rummy an be traed bak to the mid-19-th entury Mexian game ofConquian. Conquian was a muh simpler form of Gin Rummy with win-or-lose game played for a �xed stake. The best ontribution that Elwood Bakerinvented to make gin what it is now, is to re�ne the soring system, makingit muh more interesting to play for money or just for fun [10℄.1.2 Task environment of Gin RummyThe reason why I hoose this as a bahelor projet is partly beause the gamerules are easy to learn, and beause the game allows for multi player inter-ation, whih is more hallenging than other games where only one player isatually playing. And it is an interesting task environment. Gin Rummy ispartially observable, you don't know whih ard your opponent has in his/herhand. It is also stohasti, the next state of the environment is not ompletelydetermined by the urrent state and the ation exeuted by the agent. Oneannot know what ard he/she will get from the draw pile. What makesGin Rummy even harder is that it is also sequential. The urrent deision



1.3 Glossary & Game Rules: 4ould a�et all future deisions, short term ations an have long-term on-sequenes. On the other hand the stati environment of Gin Rummy makesit a bit easier for agents to do their work. The situation doesn't hange whenthe agents is \thinking" and it is disrete. Last but not least, Gin Rummy isplayed in a multi agent environment. You have to onsider in eah step whatthe other agents (players) will do or reat [8℄.At eah step/ation, the program gets some feedbak how good or howbad the move was, but this is only the feedbak on short-term. What seemsto be a good move now, might atually be a wrong one later. This makesit harder to use the reinforement learning, whih will be disussed later inthe paper. The reasons mentioned above are the reasons, why I think GinRummy is so interesting to deal with.1.3 Glossary & Game Rules:Gin rummy is a two-handed ard game that an be summarized as follows [9℄:- Dek: standard 52 ard dek.- Rank: King=highest, Queen, Jak, 10, . . . , 2, Ae=lowest.- Points: King, Queen, Jak = 10, Ae = 1; all others = fae value, whihmeans 10=10, 9=9, et.- Deal: distribute ards to the players, 10 ards to eah player.- Disard pile: pile of ards that are removed from a player's hand. Thedisard pile is always fae-up.- Draw pile: remaining ards after the ards are being dealt at the be-ginning. The draw pile is always fae-down.- Meld: a set of ards with he same value or sequenes of 3 or moreonseutive ards of the same suit.- Deadwood: the total fae value of the remaining ards that an notform melds.- Goal: form melds and redue deadwood as muh as possible; a singleard an not form part of a set and a sequene in the same hand. Agoal state is a state with at most 10 deadwood points.



1.3 Glossary & Game Rules: 5- Turn: during eah turn a player an take the top ard from the disardor draw pile, must disard one ard fae-up on the top of the disardpile and, if a goal state is reahed, may lay down meld and deadwood(alled knoking).- Knok: to end the game by exposing one's hand. Melds will be formedand deadwood will be ounted to see whih player wins. A player annot knok when he/she has more than 10 deadwood points.- Gin: to end the game with no deadwood points.- Play: players alternate turns starting with the dealer's opponent untilone player knoks or gin.- Laying o�: after one player knoks, the opponent may extend any ofthe knoking player's sets or sequenes (alled laying o� ) with any ofhis/her deadwood.- Underut: when after laying o�, the opposing player's deadwood pointsare equal or less than the player knoking.- Sore: player who knoks sores the di�erene between the other player'sdeadwood points and his/her own. If the player who knoks has nodeadwood, the other player is not allowed to lay o�, and the playerknoking reeives a sore of 25 plus the other player's deadwood points.In ase of underut, the opponent sores 25 plus the di�erene in pointsinstead of the player knoking.Due to time onstraints, a ouple of simpli�ations to the game havebeen made for this experiment. For example the laying o� option is not im-plemented and the feature that the game stops when one of the players has asore 100 is not implemented as well. The maximum deadwood ount is �xedat 10 before a player an knok. The 25-point bonus as well as the penaltyis for simpliity not implemented.At the beginning, eah player gets 10 ards whih are unknown for theopposing party. Let us say player 1 starts �rst. Player 1 has only the optionof drawing from the draw pile sine there is no disard pile yet. After drawinga ard, player 1 has to throw one of the eleven ards away to the disard pileand pass the turn to player 2. Now the disard pile is no longer empty. Player2 has the option to draw from the drawing pile as well as the disard pile.After this, player 2 has to throw a ard of his/her hoie to the disard pile.From now on, eah player in turn takes either from the drawing pile or the



1.3 Glossary & Game Rules: 6disard pile and then adds a ard to the disard pile. A player an only takesthe top ard of the disard pile. Any ard below the top ard is forbidden todraw.The goal is to group the ards in one's hands into melds. We denote� = spades~ = hearts| = lubs} = diamondsSuppose we have �8-~8-|8, |3-4-5-6, D9, �ae, |queen in our hands.In this ase, we have 2 melds. One set of ards of the same rank (8) and oneset of onseutive ards of lubs. The ards 9, Ae and Queen are unmeldedards in this hand. This hand thus has a total of 9 + 1 + 10 = 20 deadwoodpoints.Players ontinue to draw and throw ards until a player knoks or an-nounes gin. A player an only knok when he/she has less than 10 dead-wood points. Knoking is not obligatory; the player an deide to play furthereven if his or her hand has less than 10 deadwood points. After knoking orannouning gin, melds are formed with as few deadwood points as possible.The player with the most deadwood points loses the game. If a player knokswith no deadwood points, it is alled a Gin. If none of the player has knokedand there are no more ards in the drawing pile, then the game is stoppedand deadwood points are being ounted. This is seldom the ase, sine of thegames stopped before 20 turns generally. In pratie, this rarely happens,sine most of the games stop at 20 turns.



2 Complexity of Gin Rummy 72 Complexity of Gin RummyAlthough the game Gin Rummy is played only with a simple pak of playingard whih has only 52 di�erent ards, it is quite hard to alulate all thepossibilities.Gin Rummy is partially observable, stohasti, and sequential; its multiagent environment makes it even more hallenging. One annot know whatthe opponent player has in his/her hand. You an only see what hand youhave got and what ard is at the disard pile. Along the game, you an guesswhat your opponent has in his/her hand, but the game only uses 52 ards,so it will be reshu�ed very soon.Seond, your opponent an hange his/her strategy along the game, soyou have to adapt your strategy as well. Let's take a look at the deisiontree of Gin Rummy (see Figure 1). Assume player 1 is to play. Then player1 an hoose to pik a ard from the disard pile or pik a ard from thedraw pile. Let's assume player 1 piks a ard from the disard pile, then hehas 11 hoies to play. Now follows player 2; player 2 an also pik a ardfrom the disard pile or from the draw pile. Let's say player 2 piks a ardfrom the disard pile; although player 2 has only 11 ards now, there are41 possible ards played from the viewpoint of player 1. Player 1 only hasknowledge about the ten ards, whih he is holding in his hands, and the oneard that is just played. From the point of player 1, player 2 an play oneof the 41 possible ards whih are unknown for player 1. After player 2 hasplayed a ard, player 1 follows. One again player 1 have 11 ards. However,the unknown ards are redued with two. Eah time when player 1 has tothrow a ard, the unknown ards for player 1 are redued with two: one ardthat is thrown away by player 1 in the previous turn and one ard whihplayer 2 just played. Then player 1 an play again and again with 11 possiblemoves, and so on, see the deision tree below. (The deision to draw formthe disard pile or draw pile is for simpliity not shown in the tree.)As shown above, the tree an expand very fast and very wide. In a normalGin Rummy game, it usually reahes 20 hands before the game ends. Assumethe Gin Rummy game ends at hand 20, then the number of possible statesis:11�41�11�39�11�37�11�35�11�33�11�31�11�29�11�27�11�25�11�23 � 2:47�1025A ard an be:- In player's hand (IPH), so player 1 has it



2 Complexity of Gin Rummy 8

Figure 1: Deision tree for player 1- In opponent hand (IOH), the ard is in player 2's hand- In top of disard pile (TDP), the ard that has just been thrown away- In disard pile (IDP), the ard is being thrown away several turns agoor- Unknown (UNK), no knowledge where the ard is. This means the ardis obviously not in the hand of player 1, but player 1 does not knowwhere it is. It an be either in player 2's's hand or still in the draw pile.A ard is onsidered to be in the hand of the opponent if the agentnoties that the opponent atually takes the ard from the disard pile andhas not thrown it onto the disard pile. Any other ard is onsidered unknown(UNK). So with 52 ards, eah ard an be in �ve states, and we have at most552 whih is approximately 2 � 1036 possible end situations. In other words,brute-fore omputing all possible moves is too time onsuming.



3 Gin Rummy learning methodology 93 Gin Rummy learning methodologyIn the previous Setion we already saw that brute-fore alulating everypossible ation is too time onsuming and it requires massive omputationalpower. In the AI (arti�ial intelligene) world, there are lots of tehniquesto deal with problems avoiding the use of brute-fore. One of them is evo-lutionary learning. To reate a ompetitive algorithm for Gin Rummy, thispaper will use the evolutionary learning method to examine if it is suitablein solving Gin Rummy.3.1 Evolutionary learning & ross-overThe idea is to use a neural network with o-evolution tehnique [2℄ to taklethe problem. Evolutionary learning is based on the idea of organi evolu-tion, trying to let the algorithm evolve solutions to problems rather thantrying to �nd �xed rules for them, by using the priniples of evolution suhas seletion, mutation and reombination of populations. Starting with er-tain population(s), usually random, the program begins to learn. After eahphase, the population is being hanged, either by seletion, mutation, ross-over et. to form a new population. The algorithm ontinuously tries to �nda population that performs better than the previous one.The populations in this paper that are ontinuously evolving are theweights of the neural networks. With ross-over, random noise and Gaussiannoise, the weights will be hanged after eah evaluation round. The playerand the opponent eah have their own neural network. At the beginning ofthe training, the player and opponent start using two random neural net-works. The Arti�ial Neural Network (ANN) gives an output value; based onthis value, the program deides whether to take a ard from the drawing pileor the disard pile. After taking a ard, a heuristi funtion will determinewhih ard the player has to throw away to the disard pile. To improve thepreision and the reliability of the neural network, experiments had to bedone with hundreds of thousands of trainings. When one network is better,the other value of the other network will hange slightly in the diretion ofthe network with better performane. More on ross-over will be explainedlater in the setion.The neural network onsists of 3 layers: an input layer, a hidden layerand an output layer. The input layer has 52 inputs and 1 bias node, thus 53nodes in total (see Figure 2). Eah input node represent a ard of the game,exept the bias node; input node 1 represent � Ae, input node 2 represent



3.1 Evolutionary learning & ross-over 10� 2 et. The hidden layer has 26 nodes and 1 bias node. The output layerhas only 1 node, whih gives the �nal result of the neural network, deidingwhether to draw from the disard pile or the draw pile (see Figure 2).

Figure 2: Arti�ial Neural Network (ANN)The output node is also onneted to all hidden nodes. To see if eahinput has the same hane, experiment are done using two di�erent sets ofbegin weights for the input nodes. One set is to put all the begin weightsbetween the nodes to 1. The other set ontains random begin weights.3.1.1 Cross-overAn epoh in the experiments onsist of 2 or 3 pairs of games. When an epohonsist of 2 pairs of games, it atually means that the sequene of the ardsof game 1 and game 2 are the same, and so is game 3 and game 4. The onlydi�erene is that in game 1 player 1 plays �rst, while in game 2 player 2plays �rst. This mean that in game 2 for example, player 2 has exatly thesame hand as player 1 had in game 1. The reason behind this arrangementis to eliminate the \luk" fator of the players. By playing with the sameards, we ensure that both players have the same hane to win the game.The results will than be based on the superiority of the weights of the neuralnetwork. After eah epoh, the weights of the branhes between the inputnodes and the nodes in the hidden layer will be hanged. Cross-over willour depending on the number of games a player wins. In the experiment,we distinguish between single-diretion ross-over and bi-diretion ross-over.Let say, we are now doing an experiment of 1000 epohs, where eah epohonsist of 2 pairs of games using single-diretion ross-over. This mean we



3.1 Evolutionary learning & ross-over 11will play 4000 games in total, and hanges the weights at most 1000 times.After eah epoh (4 games), the algorithm will evaluate if ross-over is neededto improve the weights of player 1. When player 2 wins more than half of thegames, ross-over will our. If the training is using an ross-over of 5%, thenall the weights of the arti�ial neural network of player 1 will hange 5% inthe diretion of player 2. This mean, the weights of the network of player 1remains 95% the same and 5% of the weights of player 2 are added to theweights of network of player 1. See for example Figure 3. The weights ofplayer 2 remains the same. The weights of the branhes between the hiddenlayer and the output will be hanged in the same way. In the single-diretionross-over, only player 1 is learning from the training. After the ross-over,the weights of player 2 will be hanged by adding Gaussian noises.

Figure 3: Cross-overFor the illustration we use a simplify network to show how ross-over inthe experiments are being done.When we are training with a ross-over of 10%, the neural network ofplayer 1 will remain 90% the same and 10% of the weights of player 2 willbe added to the weights of player 1. If player 1 wins more than half of thegames or if both players have wins the equal amount of games, the weightsof player 1 will not hange sine it is a single-diretional ross-over. Afterevery epoh, the weights player 2 will be hanged by adding Gaussian noise,no matter whih player wins more.If the training is a bi-diretional ross-over, the weights of the neuralnetworks of both player an be hanged. Depending on who wins most ofthe games in eah epoh. In the bi-diretional ross-over, both players learns



3.2 Implementation of the networks (ANN) 12from eah other. If player 1 wins more than half of the games, the weightsof player 2 will be rossed with 5% or 10% in the diretion of player 1. Theweights of player 1 remains unhanged. Vie versa when player 2 wins morethan half of the games. Just like in the single-diretion ross-over, Gaussiannoise will be added to the weights at the ends of eah epoh, irrespetive ofwho wins.3.2 Implementation of the networks (ANN)3.2.1 The Arti�ial Neural NetworkEah ard has from the point of view of the agent 5 possible di�erent states:IPH, IOH, IDP, TDP and UNK. The input of the network depends on thestate of the ards. If it is in players hand (IPH) the input is 2, �2 in opponenthands (IOH), �1 if it is in the disard pile (IDP), 1 for the ard just thrownaway and 0 for unknown (UNK). Sine the ard just thrown away is not thesame as the rest of the ards in the disard pile, it makes sense to give themdi�erent values. (A player an only take the top of the disard pile, the rest ofthe ards below an not be used). At �rst, the deision was made to evaluatethe rest of the disard pile to �50, beause these ards ould not be reahedanymore until reshu�ing of the disard pile. However, it seems that �50 hastoo muh impat on the neural network. Of ourse, the network an makeadjustments, but it will need too muh time to adjust and balane the net-work. Instead of �50, value 1 is hosen, whih seems to be working quite well.The value of the hidden nodes are being alulated using the followingformula: ini = PjWj;iaj,where Wj;i is the weight of input node j to hidden node i andai = �(ini) the ativation funtion.The Arti�ial Neural Network (ANN) uses a sigmoid funtion � to omputethe ativation funtion:The formula of the sigmoid funtion is:�(x) = 1/(1 + e��x), with � = 1.Figure 5 gives an overview about the working of a neuron, with g as sigmoid.



3.2 Implementation of the networks (ANN) 13

Figure 4: Sigmoid ativation funtion �. [11℄

Figure 5: Neuron of the network [11℄.3.2.2 The heuristi funtionOne the deision is made whih ard to take, the algorithm needs to al-ulate whih of the eleven ards to throw to the disard pile. The heuristifuntion alulates the ard that is the best to throw at the disard pile. Thefuntion does this by judging the players hand, the ards in the disard pileand the known ards that the opponent has in his/her hand (the ards thatthe opponent takes from the disard pile). The idea is to make a heuristifuntion using a ombination of minimal deadwood and hane rates to al-ulate whih ard is the most strategi ard to be thrown away.As desribed in the previous Setions, deadwood points onsist of the faevalue of the ards that do not form sets. For example:Case 1: ~ 5, ~ 6, } 9 = 20 deadwood points.



3.3 Problems & solutions during implementation 14Case 2: ~ 5, } 6, ~ 9 = 20 deadwood points.Although these two ases have the same number of deadwood points, it islear that the �rst ombination is better, beause it almost forms a set.With a ~ 4 or ~ 7 it beomes a set. In ase 2, it is just some \random"ards. So, the deision is made to ount ~ 5 and ~ 6 as half as original. Thismeans the number of deadwood points of the �rst ase is 15 deadwood points(12 � 5+ 12 � 6+ 9 = 15 rounded) and the seond ase stays the same as before,20 deadwood points. The same with the following two ases:Case 3: � 5, ~ 5, } 8, } 3 = 16 deadwood points.Case 4: � 5, } 4, } 9, ~ 3 = 21 deadwood points.An usual Gin Rummy game has about 20 hands, but when training theagent, a lot more \hands" are needed. To solve this problem, the ards inthe disard pile are reshu�ed again if the drawing pile runs out of ards.Eah game has a maximum of 10,000 hands.Eah epoh onsists of 2 pairs ofgames. In eah pair of games, the ards order is idential. In the �rst game,player 1 plays �rst and in the seond game player 2 plays �rst. After playing2 pairs of games, the algorithm heks whih player wins more than half ofthe games. If player 1 wins more than 2 of the 4 games, the weights of player2's network will be rossed 5% into the diretion of player 1 and vie versa.For example when player 1 wins more than 2 of the 4 games, all the weightsof player 2 stay 95% the same and take 5% of the weights between eah nodeof player 1 and add it up to the orresponding branh of the network of player2. In later experiments 6 games will be used instead of 4, and with anotherross-over perentage, for example 10%.3.3 Problems & solutions during implementationOne of the hallenges was �nding the \right" output value for the arti�ialneural network. To have an estimate of the output value, the neural networkwas run 1,000,000 (one million) times. After the test, 0.5 is hosen as thresh-old value for the neural network.In some ases, the neural network omes to a deadlok, for example, whenboth players have similar hands. Player 1 throws a ard, player 2 piks it up,throws the same ard again and player1 piks it up again et. Suh situationsan go on forever. In the experiment it happened that the player is doing thesame ations more than 200,000 times. To solve this problem, random noiseis added to the weights in addition to the rossover. Experiments have beendone with random noise in the range between �0:01 and 0.01, and the rangebetween �0:0001 and 0.0001. Even after adding noise to the weights, it some-



3.3 Problems & solutions during implementation 15times still required the network to do more than 100,000 hands to hangethe weights and esape this semi-deadlok. Therefore a maximum of 100,000hands has been hosen as a limit.Instead of random noise, tests were also onduted with Gaussian noiseto �nd out if there are signi�ant di�erenes. These are generated using theGaussian distribution:

Figure 6: Gaussian distributionFigure 6 is a Gaussian distribution showing the probability y of �nding adeviation x from the mean (x = 0)y = (1/�p2�) �e�x2=2where e is the base of natural logarithms and � is the standard deviation.In the experiments with bi-diretion ross-over, both neural networkslearn from eah other and hange their weights using ross-over. The ex-periments were done using Intel Pentium PCs with 1.7GHZ proessors. Arti-�ial neural networks using bi-diretion ross-over were trained up to 500,000games in approximately 8 hours. To test all the possible players (ross-over5% with 4 games adding random noise, ross-over 5% with 4 games addingGaussian noise, ross-over 10% with 4 games adding random noise et.), sev-eral omputers of LIACS (Leiden Institute of Advaned Siene) were usedto train the agents/players.



3.3 Problems & solutions during implementation 16However the omputers were not always available and even if they wereavailable, it was not possible to use them for several hours straight. To savetime and to utilize the available resoures, the weights are being saved af-ter every one thousand games of training. When the training needs to beresumed, the program just reads the weight being saved at the previoustraining.Besides testing with Bi-diretion with a maximum of 10,000 hands, exper-iments are also onduted with single-diretion ross-over with a maximum5,000 hands to see if it results in better performane. Instead of letting botharti�ial neural networks to learn from eah other, what will happen if onlyone neural network learns from the other? One neural network does the sameas bi-diretion ross-over, but the other just adds Gaussian noise. Beauseof time onstraints, these agents using single-diretion were only trained halfas muh as in the ase of bi-diretion ross-over. But amazingly the perfor-mane is almost as good as the bi-diretion ross-over. The results are shownin Setion 4.



4 Training results 174 Training resultsAfter explaining about the working of the neural network and the heuristifuntion in Setion 3, let us see how eah agent performs. To test what rangeof random noise to add to the weights, the average hands per game weremeasured. First using a random noise between �0:01 and 0.01 (Figure 7),then using a random noise between �0:0001 and 0.0001 (Figure 8). The av-erage hands per game using a bigger random noise interval are signi�antlyless than when using smaller random noise interval. It seems to be ideal touse the random noise whih leads to less average hands per game, howeverthe weights of the neural were too fast and too muh using a random noisebetween �0:01 and 0.01. The hanges in random noise were muh biggerthan the hanges of the neural network using ross-over. After 50,000 games,some of the weights were already above 130. Figure 7 below show the averagehands/turns per game. The training was done using 100,000 games, 25,000epohs with a random noise between �0:01 and 0.01.Figure 7 below show what the average hands/turns per game. The train-ing was done using 100,000 games, 25,000 epohs with a random noise be-tween �0:01 and 0.01.

Figure 7: Average hands per game with random noise between �0:01 and0.01



4 Training results 18The number of average hands per game using random noise between�0:0001 and 0.0001 are muh higher. This is beause of the extra adjust-ment needed to hange the weights. After eah adjustment the weights arehanged at most with 0.0001. Figure 8 gives the average hands per game withrandom noise between �0:0001 and 0.0001.

Figure 8: Average hands per game with random noise between �0:0001 and0.0001In the experiment with bigger random noise, the best result seems to beat a training sample of 45,000. The number of turns with bigger randomnoise is signi�antly smaller than the test with smaller random noise. After500,000 trainings with random noise between �0:0001 and 0.0001, there isstill no lear sign of derease in the number of hands per game, perhaps moretraining is needed.We now desribe some experiments with di�erent strategies. Rand1 isa random player that takes and throws away ards randomly. Using no strat-egy at all. Rand2 is similar to the other \players" using the same heuristifuntion to deide whih ard to throw, but does not have a Arti�ial Neu-ral Network (ANN) to deide whih ards to take. It just takes randomlyfrom the disard pile and the draw pile. Below are 3 di�erent tables. Eahtable show the results of a math between the di�erent \players". All playersplays against everybody, exept itself. Table 1 shows the results of \players"



4 Training results 19! wins# lose Rand1 Rand2 Cross 5% Cross 5% Cross 10% Cross 10%4 games 6 games 4 games 6 gamesRand1 X 918 930 922 925 928Rand2 0 X 606 637 617 621Cross 5%, 0 385 X 505 498 4944 gamesCross 5%, 0 348 495 X 499 4966 gamesCross 10%, 0 377 495 494 X 4974 gamesCross 10%, 0 372 503 499 499 X6 games Table 1: Standard begin-weight with random noise.trained using standard begin-weight with random noise. Rand1 and Rand2don't use any neural network at all. Rand1 is ompletely random and Rand2takes random, but uses the same throw ard funtion as the rest. Table 2uses random begin weight with Gaussian noise and Table 3 standard begin-weight with Gaussian noise. All the players were trained 500,000 games withthe neural network before entering the math.The experiments done in Table 1, 2 and 3 all use bi-diretion ross-over.To see if single-diretion makes any di�erene, experiments were done usingsingle-diretion ross-over. Table 4 shows the result of the tournament ofthe agents/players using single-diretion ross-over. Due to time onstraints,the players using single-diretion ross-over were only trained 250,000 times.However, it seems that the result are almost as good as using bi-diretionross-over. With fewer ross-overs, the neural network an train more gamesper hour making it learns \better".As we an see from the tables, the methods we used to train the playersdoes have inuene on the outome of the experiments. Table 2 and Table3 both use the same Gaussian noise funtion, have the same players, butdi�er in begin-weights. Table 2 use random begin-weights, while Table 3 usestandard begin-weights. When playing against player \Rand 2", the playertrained with ross 5 % in 4 games perform the best in Table 2, while theplayer trained with ross 10 % 6 games does the better job in Table 3.



4 Training results 20
! wins# lose Rand1 Rand2 Cross 5% Cross 5% Cross 10% Cross 10%4 games 6 games 4 games 6 gamesRand1 X 918 920 923 926 932Rand2 0 X 602 588 588 581Cross 5%, 0 384 X 504 499 4954 gamesCross 5%, 0 405 490 X 498 5166 gamesCross 10%, 0 405 498 498 X 5034 gamesCross 10%, 0 404 502 481 493 X6 games Table 2: Random begin-weight with Gaussian noise.
! wins# lose Rand1 Rand2 Cross 5% Cross 5% Cross 10% Cross 10%4 games 6 games 4 games 6 gamesRand1 X 918 929 911 928 913Rand2 0 X 584 593 594 622Cross 5%, 0 408 X 481 518 5274 gamesCross 5%, 0 394 518 X 479 4676 gamesCross 10%, 0 396 473 516 X 4994 gamesCross 10%, 0 363 464 527 495 X6 games Table 3: Standard begin-weight with Gaussian noise.



4 Training results 21! wins# lose Rand1 Rand2 Cross 5% Cross 5% Cross 10% Cross 10%4 games 6 games 4 games 6 gamesRand1 X 918 966 962 964 972Rand2 0 X 573 589 581 581Cross 5%, 0 421 X 476 496 4864 gamesCross 5%, 0 403 518 X 488 4926 gamesCross 10%, 0 406 496 507 X 4944 gamesCross 10%, 0 409 511 499 497 X6 gamesTable 4: Single-diretion ross-over after 250,000 trainings.Table 2 and Table 4 di�er in the way ross-over is being done. Table 2 usebi-diretion ros-sover (both players learn from eah other), while Table 4 usea single-diretion ross-over (only one player is learning). Judging from theresults played with player \Rand 2", using bi-diretion ross-over performsslightly better than single-diretion ross-over in general.Player \Rand 2" uses the same heuristi funtion to throw ard, but doesnot have a neural network to ompute where to pik the ard from (disardpile or draw pile). When judging the performane of the di�erent players, itis easier to benhmark them with player \Rand 2".



5 Disussion & Conlusion 225 Disussion & Conlusion5.1 Is ANN useful for solving Gin Rummy?Judging from the result of the three tables, it seems that there are no majordi�erenes between using standard begin-weights (all weights are set to 1),and using random begin-weights, with Gaussian noise or with random noise.Comparing Table 2 and Table 3, there is no lear evidene whih player per-forms better. In Table 2, it seems that the player trained with ross-over 5%in 4 games performs better than the rest when playing against Rand2. InTable 3, it is the player who is trained with ross-over 10% in 6 games thatdoes the better job when playing against Rand2. This onlusion is arguable,sine other players do better in other mathes. In either way, the results showthat using an Arti�ial Neural Network, does perform better than Rand2,a player that does the same as the other players, but that does not have aneural network and takes ard randomly. Perhaps the neural network needsto be trained muh longer, or perhaps the random noise and Gaussian noiseare inuening the neural network too muh.Table 4 shows the result using single-diretion ross-over. With half asmuh training as bi-diretion, single-diretion ross-over performs quite good.Using single-diretion, a higher number of trainings per hour an be reahedthan with bi-diretion ross-over. However, from the experiments and theresults shown in all four tables, it does not really matter whih player/agentsyou hoose, no matter how small the adjustment after eah evaluation round.When the Arti�ial Neural Network is trained long enough, the performanewill inrease. But the number of games training will most likely inrease muhfaster than the performane.We an indeed use Arti�ial Neural Network to solve Gin Rummy. Aslong as the neural networks are trained long enough, it does not matter ifyou hoose bi-diretion or single-diretion, ross-over 5% or 10%, the perfor-mane will inrease. However, hoosing the right one, will save the networka lot of training time.5.2 Further researhDue to time onstraints, it was not possible to train and test every possibleombination of the several parameters. For example, ross-over 15% insteadof 5% and 10%, ross-over after 8 games played instead of 4 or 6 games. Fur-ther training of the urrent setup is needed to see whih setup yields a better



5.2 Further researh 23performane in shortest time. Another possibility is to Improve the heuristifuntion to throw ards. Tests an also be done using more than 27 nodes (26hidden nodes + 1 bias node) in the hidden layer or add another hidden layerbetween the urrent hidden layer and the output layer. The neural networkan also further be improved by playing with experts and using dataming[13℄ to adjust the weights of the Arti�ial Neural Network.Beside of using an Arti�ial Neural Network to solved Gin Rummy, wean also use o-evolutionary learning to solve other (ard) games like Poker,Bridge, Hearts, Chekers.
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