
Using Arti�
ial Intelligen
e to solveGin RummyBa
helor proje
tName: Tsoe Loong Listudent number: 0223948Study: Computer S
ien
e mono-dis
ipline Informati
sMajor Informati
s/minor business s
ien
eSupervisor: Dr. W. A. Kosters26th O
tober 2006

1Prefa
eFor the graduation of the ba
helor program Computer S
ien
e, I try to useArti�
ial Intelligen
e to solve the game Gin Rummy. Under supervision ofDr. W. A. Kosters, this paper is written in 2006, during the third year of myba
helor program.The main idea behind the use of Arti�
ial Intelligen
e is to make a pro-gram that has a performan
e
lose to good players or even performs betterand faster. And in order to avoid hard
ode programming, just try to let theprogram \learn" itself.Abstra
tGin Rummy is a 52-
ard game, with not many rules and restri
tions. Theplayers have lots of freedom to play the game the way they wants to. Usingbrute for
e to
al
ulate all possibilities is not an option sin
e it will
osttoo mu
h time and is pra
ti
ally not possible. A more
lever way has tobe used to handle this problem. The resear
h question is: Can we
reate a
ompetitive algorithm using a neural network to solve Gin Rummy? In thispaper, we will see what the
omplexity is of Gin Rummy and how we aregoing to deal with it using a neural network. We will dis
uss what the resultsare, and how well the program is doing
ompared with skilled human players.Key words: neural network, reinfor
ement, evolutionary learning,
o-evolution,Gaussian noise,
ross-over.

CONTENTS 2Contents1 Introdu
tion and game rules 31.1 Gin Rummy game history . 31.2 Task environment of Gin Rummy 31.3 Glossary & Game Rules: . 42 Complexity of Gin Rummy 73 Gin Rummy learning methodology 93.1 Evolutionary learning &
ross-over 93.1.1 Cross-over . 103.2 Implementation of the networks (ANN) 123.2.1 The Arti�
ial Neural Network 123.2.2 The heuristi
 fun
tion 133.3 Problems & solutions during implementation 144 Training results 175 Dis
ussion & Con
lusion 225.1 Is ANN useful for solving Gin Rummy? 225.2 Further resear
h . 22

1 Introdu
tion and game rules 31 Introdu
tion and game rulesIn this paper, we will see if an arti�
ial neural network is suitable for solvingGin Rummy, and if it is suitable, how to use the neural network to solveit. In Se
tion 1, a short introdu
tion about the history of Gin Rummy willbe given together with a glossary explaining several terms used in the gameand in this paper. Se
tion 2 is about the
omplexity of Gin Rummy. Se
tion3 explains how a neural network works, how the resear
h is
ondu
ted, andmentionsproblems and solutions during the implementation. Se
tion 4 givesthe trainings results and �nally we have a dis
ussion in Se
tion 5.1.1 Gin Rummy game historyAs a game, Gin �rst appeared in the beginning of the 20th
entury. GinRummy is a two-player
ard game, played with 52
ards. Some
redit forthe game is given to Elwood Baker (also a Bridge tutor) who invented GinRummy in New York. He later a
hieved mu
h posthumous fame as a vi
-tim of an unexplained murder
ase. Only in the thirties of the 20th
enturythe game of Gin be
ame popular, espe
ially in the Ameri
an
ulture as ginbe
ame a game of popular Broadway and Hollywood stars and featured inmany movies as well [10℄.The popularity of Gin is due to the fa
t that the game is quite easyto learn and it is a rather fast-pa
ed game as well. The earliest form of theGin Rummy
an be tra
ed ba
k to the mid-19-th
entury Mexi
an game ofConquian. Conquian was a mu
h simpler form of Gin Rummy with win-or-lose game played for a �xed stake. The best
ontribution that Elwood Bakerinvented to make gin what it is now, is to re�ne the s
oring system, makingit mu
h more interesting to play for money or just for fun [10℄.1.2 Task environment of Gin RummyThe reason why I
hoose this as a ba
helor proje
t is partly be
ause the gamerules are easy to learn, and be
ause the game allows for multi player inter-a
tion, whi
h is more
hallenging than other games where only one player isa
tually playing. And it is an interesting task environment. Gin Rummy ispartially observable, you don't know whi
h
ard your opponent has in his/herhand. It is also sto
hasti
, the next state of the environment is not
ompletelydetermined by the
urrent state and the a
tion exe
uted by the agent. One
annot know what
ard he/she will get from the draw pile. What makesGin Rummy even harder is that it is also sequential. The
urrent de
ision

1.3 Glossary & Game Rules: 4
ould a�e
t all future de
isions, short term a
tions
an have long-term
on-sequen
es. On the other hand the stati
 environment of Gin Rummy makesit a bit easier for agents to do their work. The situation doesn't
hange whenthe agents is \thinking" and it is dis
rete. Last but not least, Gin Rummy isplayed in a multi agent environment. You have to
onsider in ea
h step whatthe other agents (players) will do or rea
t [8℄.At ea
h step/a
tion, the program gets some feedba
k how good or howbad the move was, but this is only the feedba
k on short-term. What seemsto be a good move now, might a
tually be a wrong one later. This makesit harder to use the reinfor
ement learning, whi
h will be dis
ussed later inthe paper. The reasons mentioned above are the reasons, why I think GinRummy is so interesting to deal with.1.3 Glossary & Game Rules:Gin rummy is a two-handed
ard game that
an be summarized as follows [9℄:- De
k: standard 52
ard de
k.- Rank: King=highest, Queen, Ja
k, 10, . . . , 2, A
e=lowest.- Points: King, Queen, Ja
k = 10, A
e = 1; all others = fa
e value, whi
hmeans 10=10, 9=9, et
.- Deal: distribute
ards to the players, 10
ards to ea
h player.- Dis
ard pile: pile of
ards that are removed from a player's hand. Thedis
ard pile is always fa
e-up.- Draw pile: remaining
ards after the
ards are being dealt at the be-ginning. The draw pile is always fa
e-down.- Meld: a set of
ards with he same value or sequen
es of 3 or more
onse
utive
ards of the same suit.- Deadwood: the total fa
e value of the remaining
ards that
an notform melds.- Goal: form melds and redu
e deadwood as mu
h as possible; a single
ard
an not form part of a set and a sequen
e in the same hand. Agoal state is a state with at most 10 deadwood points.

1.3 Glossary & Game Rules: 5- Turn: during ea
h turn a player
an take the top
ard from the dis
ardor draw pile, must dis
ard one
ard fa
e-up on the top of the dis
ardpile and, if a goal state is rea
hed, may lay down meld and deadwood(
alled kno
king).- Kno
k: to end the game by exposing one's hand. Melds will be formedand deadwood will be
ounted to see whi
h player wins. A player
annot kno
k when he/she has more than 10 deadwood points.- Gin: to end the game with no deadwood points.- Play: players alternate turns starting with the dealer's opponent untilone player kno
ks or gin.- Laying o�: after one player kno
ks, the opponent may extend any ofthe kno
king player's sets or sequen
es (
alled laying o�) with any ofhis/her deadwood.- Under
ut: when after laying o�, the opposing player's deadwood pointsare equal or less than the player kno
king.- S
ore: player who kno
ks s
ores the di�eren
e between the other player'sdeadwood points and his/her own. If the player who kno
ks has nodeadwood, the other player is not allowed to lay o�, and the playerkno
king re
eives a s
ore of 25 plus the other player's deadwood points.In
ase of under
ut, the opponent s
ores 25 plus the di�eren
e in pointsinstead of the player kno
king.Due to time
onstraints, a
ouple of simpli�
ations to the game havebeen made for this experiment. For example the laying o� option is not im-plemented and the feature that the game stops when one of the players has as
ore 100 is not implemented as well. The maximum deadwood
ount is �xedat 10 before a player
an kno
k. The 25-point bonus as well as the penaltyis for simpli
ity not implemented.At the beginning, ea
h player gets 10
ards whi
h are unknown for theopposing party. Let us say player 1 starts �rst. Player 1 has only the optionof drawing from the draw pile sin
e there is no dis
ard pile yet. After drawinga
ard, player 1 has to throw one of the eleven
ards away to the dis
ard pileand pass the turn to player 2. Now the dis
ard pile is no longer empty. Player2 has the option to draw from the drawing pile as well as the dis
ard pile.After this, player 2 has to throw a
ard of his/her
hoi
e to the dis
ard pile.From now on, ea
h player in turn takes either from the drawing pile or the

1.3 Glossary & Game Rules: 6dis
ard pile and then adds a
ard to the dis
ard pile. A player
an only takesthe top
ard of the dis
ard pile. Any
ard below the top
ard is forbidden todraw.The goal is to group the
ards in one's hands into melds. We denote� = spades~ = hearts| =
lubs} = diamondsSuppose we have �8-~8-|8, |3-4-5-6, D9, �a
e, |queen in our hands.In this
ase, we have 2 melds. One set of
ards of the same rank (8) and oneset of
onse
utive
ards of
lubs. The
ards 9, A
e and Queen are unmelded
ards in this hand. This hand thus has a total of 9 + 1 + 10 = 20 deadwoodpoints.Players
ontinue to draw and throw
ards until a player kno
ks or an-noun
es gin. A player
an only kno
k when he/she has less than 10 dead-wood points. Kno
king is not obligatory; the player
an de
ide to play furthereven if his or her hand has less than 10 deadwood points. After kno
king orannoun
ing gin, melds are formed with as few deadwood points as possible.The player with the most deadwood points loses the game. If a player kno
kswith no deadwood points, it is
alled a Gin. If none of the player has kno
kedand there are no more
ards in the drawing pile, then the game is stoppedand deadwood points are being
ounted. This is seldom the
ase, sin
e of thegames stopped before 20 turns generally. In pra
ti
e, this rarely happens,sin
e most of the games stop at 20 turns.

2 Complexity of Gin Rummy 72 Complexity of Gin RummyAlthough the game Gin Rummy is played only with a simple pa
k of playing
ard whi
h has only 52 di�erent
ards, it is quite hard to
al
ulate all thepossibilities.Gin Rummy is partially observable, sto
hasti
, and sequential; its multiagent environment makes it even more
hallenging. One
annot know whatthe opponent player has in his/her hand. You
an only see what hand youhave got and what
ard is at the dis
ard pile. Along the game, you
an guesswhat your opponent has in his/her hand, but the game only uses 52
ards,so it will be reshu�ed very soon.Se
ond, your opponent
an
hange his/her strategy along the game, soyou have to adapt your strategy as well. Let's take a look at the de
isiontree of Gin Rummy (see Figure 1). Assume player 1 is to play. Then player1
an
hoose to pi
k a
ard from the dis
ard pile or pi
k a
ard from thedraw pile. Let's assume player 1 pi
ks a
ard from the dis
ard pile, then hehas 11
hoi
es to play. Now follows player 2; player 2
an also pi
k a
ardfrom the dis
ard pile or from the draw pile. Let's say player 2 pi
ks a
ardfrom the dis
ard pile; although player 2 has only 11
ards now, there are41 possible
ards played from the viewpoint of player 1. Player 1 only hasknowledge about the ten
ards, whi
h he is holding in his hands, and the one
ard that is just played. From the point of player 1, player 2
an play oneof the 41 possible
ards whi
h are unknown for player 1. After player 2 hasplayed a
ard, player 1 follows. On
e again player 1 have 11
ards. However,the unknown
ards are redu
ed with two. Ea
h time when player 1 has tothrow a
ard, the unknown
ards for player 1 are redu
ed with two: one
ardthat is thrown away by player 1 in the previous turn and one
ard whi
hplayer 2 just played. Then player 1
an play again and again with 11 possiblemoves, and so on, see the de
ision tree below. (The de
ision to draw formthe dis
ard pile or draw pile is for simpli
ity not shown in the tree.)As shown above, the tree
an expand very fast and very wide. In a normalGin Rummy game, it usually rea
hes 20 hands before the game ends. Assumethe Gin Rummy game ends at hand 20, then the number of possible statesis:11�41�11�39�11�37�11�35�11�33�11�31�11�29�11�27�11�25�11�23 � 2:47�1025A
ard
an be:- In player's hand (IPH), so player 1 has it

2 Complexity of Gin Rummy 8

Figure 1: De
ision tree for player 1- In opponent hand (IOH), the
ard is in player 2's hand- In top of dis
ard pile (TDP), the
ard that has just been thrown away- In dis
ard pile (IDP), the
ard is being thrown away several turns agoor- Unknown (UNK), no knowledge where the
ard is. This means the
ardis obviously not in the hand of player 1, but player 1 does not knowwhere it is. It
an be either in player 2's's hand or still in the draw pile.A
ard is
onsidered to be in the hand of the opponent if the agentnoti
es that the opponent a
tually takes the
ard from the dis
ard pile andhas not thrown it onto the dis
ard pile. Any other
ard is
onsidered unknown(UNK). So with 52
ards, ea
h
ard
an be in �ve states, and we have at most552 whi
h is approximately 2 � 1036 possible end situations. In other words,brute-for
e
omputing all possible moves is too time
onsuming.

3 Gin Rummy learning methodology 93 Gin Rummy learning methodologyIn the previous Se
tion we already saw that brute-for
e
al
ulating everypossible a
tion is too time
onsuming and it requires massive
omputationalpower. In the AI (arti�
ial intelligen
e) world, there are lots of te
hniquesto deal with problems avoiding the use of brute-for
e. One of them is evo-lutionary learning. To
reate a
ompetitive algorithm for Gin Rummy, thispaper will use the evolutionary learning method to examine if it is suitablein solving Gin Rummy.3.1 Evolutionary learning &
ross-overThe idea is to use a neural network with
o-evolution te
hnique [2℄ to ta
klethe problem. Evolutionary learning is based on the idea of organi
 evolu-tion, trying to let the algorithm evolve solutions to problems rather thantrying to �nd �xed rules for them, by using the prin
iples of evolution su
has sele
tion, mutation and re
ombination of populations. Starting with
er-tain population(s), usually random, the program begins to learn. After ea
hphase, the population is being
hanged, either by sele
tion, mutation,
ross-over et
. to form a new population. The algorithm
ontinuously tries to �nda population that performs better than the previous one.The populations in this paper that are
ontinuously evolving are theweights of the neural networks. With
ross-over, random noise and Gaussiannoise, the weights will be
hanged after ea
h evaluation round. The playerand the opponent ea
h have their own neural network. At the beginning ofthe training, the player and opponent start using two random neural net-works. The Arti�
ial Neural Network (ANN) gives an output value; based onthis value, the program de
ides whether to take a
ard from the drawing pileor the dis
ard pile. After taking a
ard, a heuristi
 fun
tion will determinewhi
h
ard the player has to throw away to the dis
ard pile. To improve thepre
ision and the reliability of the neural network, experiments had to bedone with hundreds of thousands of trainings. When one network is better,the other value of the other network will
hange slightly in the dire
tion ofthe network with better performan
e. More on
ross-over will be explainedlater in the se
tion.The neural network
onsists of 3 layers: an input layer, a hidden layerand an output layer. The input layer has 52 inputs and 1 bias node, thus 53nodes in total (see Figure 2). Ea
h input node represent a
ard of the game,ex
ept the bias node; input node 1 represent � A
e, input node 2 represent

3.1 Evolutionary learning &
ross-over 10� 2 et
. The hidden layer has 26 nodes and 1 bias node. The output layerhas only 1 node, whi
h gives the �nal result of the neural network, de
idingwhether to draw from the dis
ard pile or the draw pile (see Figure 2).

Figure 2: Arti�
ial Neural Network (ANN)The output node is also
onne
ted to all hidden nodes. To see if ea
hinput has the same
han
e, experiment are done using two di�erent sets ofbegin weights for the input nodes. One set is to put all the begin weightsbetween the nodes to 1. The other set
ontains random begin weights.3.1.1 Cross-overAn epo
h in the experiments
onsist of 2 or 3 pairs of games. When an epo
h
onsist of 2 pairs of games, it a
tually means that the sequen
e of the
ardsof game 1 and game 2 are the same, and so is game 3 and game 4. The onlydi�eren
e is that in game 1 player 1 plays �rst, while in game 2 player 2plays �rst. This mean that in game 2 for example, player 2 has exa
tly thesame hand as player 1 had in game 1. The reason behind this arrangementis to eliminate the \lu
k" fa
tor of the players. By playing with the same
ards, we ensure that both players have the same
han
e to win the game.The results will than be based on the superiority of the weights of the neuralnetwork. After ea
h epo
h, the weights of the bran
hes between the inputnodes and the nodes in the hidden layer will be
hanged. Cross-over willo

ur depending on the number of games a player wins. In the experiment,we distinguish between single-dire
tion
ross-over and bi-dire
tion
ross-over.Let say, we are now doing an experiment of 1000 epo
hs, where ea
h epo
h
onsist of 2 pairs of games using single-dire
tion
ross-over. This mean we

3.1 Evolutionary learning &
ross-over 11will play 4000 games in total, and
hanges the weights at most 1000 times.After ea
h epo
h (4 games), the algorithm will evaluate if
ross-over is neededto improve the weights of player 1. When player 2 wins more than half of thegames,
ross-over will o

ur. If the training is using an
ross-over of 5%, thenall the weights of the arti�
ial neural network of player 1 will
hange 5% inthe dire
tion of player 2. This mean, the weights of the network of player 1remains 95% the same and 5% of the weights of player 2 are added to theweights of network of player 1. See for example Figure 3. The weights ofplayer 2 remains the same. The weights of the bran
hes between the hiddenlayer and the output will be
hanged in the same way. In the single-dire
tion
ross-over, only player 1 is learning from the training. After the
ross-over,the weights of player 2 will be
hanged by adding Gaussian noises.

Figure 3: Cross-overFor the illustration we use a simplify network to show how
ross-over inthe experiments are being done.When we are training with a
ross-over of 10%, the neural network ofplayer 1 will remain 90% the same and 10% of the weights of player 2 willbe added to the weights of player 1. If player 1 wins more than half of thegames or if both players have wins the equal amount of games, the weightsof player 1 will not
hange sin
e it is a single-dire
tional
ross-over. Afterevery epo
h, the weights player 2 will be
hanged by adding Gaussian noise,no matter whi
h player wins more.If the training is a bi-dire
tional
ross-over, the weights of the neuralnetworks of both player
an be
hanged. Depending on who wins most ofthe games in ea
h epo
h. In the bi-dire
tional
ross-over, both players learns

3.2 Implementation of the networks (ANN) 12from ea
h other. If player 1 wins more than half of the games, the weightsof player 2 will be
rossed with 5% or 10% in the dire
tion of player 1. Theweights of player 1 remains un
hanged. Vi
e versa when player 2 wins morethan half of the games. Just like in the single-dire
tion
ross-over, Gaussiannoise will be added to the weights at the ends of ea
h epo
h, irrespe
tive ofwho wins.3.2 Implementation of the networks (ANN)3.2.1 The Arti�
ial Neural NetworkEa
h
ard has from the point of view of the agent 5 possible di�erent states:IPH, IOH, IDP, TDP and UNK. The input of the network depends on thestate of the
ards. If it is in players hand (IPH) the input is 2, �2 in opponenthands (IOH), �1 if it is in the dis
ard pile (IDP), 1 for the
ard just thrownaway and 0 for unknown (UNK). Sin
e the
ard just thrown away is not thesame as the rest of the
ards in the dis
ard pile, it makes sense to give themdi�erent values. (A player
an only take the top of the dis
ard pile, the rest ofthe
ards below
an not be used). At �rst, the de
ision was made to evaluatethe rest of the dis
ard pile to �50, be
ause these
ards
ould not be rea
hedanymore until reshu�ing of the dis
ard pile. However, it seems that �50 hastoo mu
h impa
t on the neural network. Of
ourse, the network
an makeadjustments, but it will need too mu
h time to adjust and balan
e the net-work. Instead of �50, value 1 is
hosen, whi
h seems to be working quite well.The value of the hidden nodes are being
al
ulated using the followingformula: ini = PjWj;iaj,where Wj;i is the weight of input node j to hidden node i andai = �(ini) the a
tivation fun
tion.The Arti�
ial Neural Network (ANN) uses a sigmoid fun
tion � to
omputethe a
tivation fun
tion:The formula of the sigmoid fun
tion is:�(x) = 1/(1 + e��x), with � = 1.Figure 5 gives an overview about the working of a neuron, with g as sigmoid.

3.2 Implementation of the networks (ANN) 13

Figure 4: Sigmoid a
tivation fun
tion �. [11℄

Figure 5: Neuron of the network [11℄.3.2.2 The heuristi
 fun
tionOn
e the de
ision is made whi
h
ard to take, the algorithm needs to
al-
ulate whi
h of the eleven
ards to throw to the dis
ard pile. The heuristi
fun
tion
al
ulates the
ard that is the best to throw at the dis
ard pile. Thefun
tion does this by judging the players hand, the
ards in the dis
ard pileand the known
ards that the opponent has in his/her hand (the
ards thatthe opponent takes from the dis
ard pile). The idea is to make a heuristi
fun
tion using a
ombination of minimal deadwood and
han
e rates to
al-
ulate whi
h
ard is the most strategi

ard to be thrown away.As des
ribed in the previous Se
tions, deadwood points
onsist of the fa
evalue of the
ards that do not form sets. For example:Case 1: ~ 5, ~ 6, } 9 = 20 deadwood points.

3.3 Problems & solutions during implementation 14Case 2: ~ 5, } 6, ~ 9 = 20 deadwood points.Although these two
ases have the same number of deadwood points, it is
lear that the �rst
ombination is better, be
ause it almost forms a set.With a ~ 4 or ~ 7 it be
omes a set. In
ase 2, it is just some \random"
ards. So, the de
ision is made to
ount ~ 5 and ~ 6 as half as original. Thismeans the number of deadwood points of the �rst
ase is 15 deadwood points(12 � 5+ 12 � 6+ 9 = 15 rounded) and the se
ond
ase stays the same as before,20 deadwood points. The same with the following two
ases:Case 3: � 5, ~ 5, } 8, } 3 = 16 deadwood points.Case 4: � 5, } 4, } 9, ~ 3 = 21 deadwood points.An usual Gin Rummy game has about 20 hands, but when training theagent, a lot more \hands" are needed. To solve this problem, the
ards inthe dis
ard pile are reshu�ed again if the drawing pile runs out of
ards.Ea
h game has a maximum of 10,000 hands.Ea
h epo
h
onsists of 2 pairs ofgames. In ea
h pair of games, the
ards order is identi
al. In the �rst game,player 1 plays �rst and in the se
ond game player 2 plays �rst. After playing2 pairs of games, the algorithm
he
ks whi
h player wins more than half ofthe games. If player 1 wins more than 2 of the 4 games, the weights of player2's network will be
rossed 5% into the dire
tion of player 1 and vi
e versa.For example when player 1 wins more than 2 of the 4 games, all the weightsof player 2 stay 95% the same and take 5% of the weights between ea
h nodeof player 1 and add it up to the
orresponding bran
h of the network of player2. In later experiments 6 games will be used instead of 4, and with another
ross-over per
entage, for example 10%.3.3 Problems & solutions during implementationOne of the
hallenges was �nding the \right" output value for the arti�
ialneural network. To have an estimate of the output value, the neural networkwas run 1,000,000 (one million) times. After the test, 0.5 is
hosen as thresh-old value for the neural network.In some
ases, the neural network
omes to a deadlo
k, for example, whenboth players have similar hands. Player 1 throws a
ard, player 2 pi
ks it up,throws the same
ard again and player1 pi
ks it up again et
. Su
h situations
an go on forever. In the experiment it happened that the player is doing thesame a
tions more than 200,000 times. To solve this problem, random noiseis added to the weights in addition to the
rossover. Experiments have beendone with random noise in the range between �0:01 and 0.01, and the rangebetween �0:0001 and 0.0001. Even after adding noise to the weights, it some-

3.3 Problems & solutions during implementation 15times still required the network to do more than 100,000 hands to
hangethe weights and es
ape this semi-deadlo
k. Therefore a maximum of 100,000hands has been
hosen as a limit.Instead of random noise, tests were also
ondu
ted with Gaussian noiseto �nd out if there are signi�
ant di�eren
es. These are generated using theGaussian distribution:

Figure 6: Gaussian distributionFigure 6 is a Gaussian distribution showing the probability y of �nding adeviation x from the mean (x = 0)y = (1/�p2�) �e�x2=2where e is the base of natural logarithms and � is the standard deviation.In the experiments with bi-dire
tion
ross-over, both neural networkslearn from ea
h other and
hange their weights using
ross-over. The ex-periments were done using Intel Pentium PCs with 1.7GHZ pro
essors. Arti-�
ial neural networks using bi-dire
tion
ross-over were trained up to 500,000games in approximately 8 hours. To test all the possible players (
ross-over5% with 4 games adding random noise,
ross-over 5% with 4 games addingGaussian noise,
ross-over 10% with 4 games adding random noise et
.), sev-eral
omputers of LIACS (Leiden Institute of Advan
ed S
ien
e) were usedto train the agents/players.

3.3 Problems & solutions during implementation 16However the
omputers were not always available and even if they wereavailable, it was not possible to use them for several hours straight. To savetime and to utilize the available resour
es, the weights are being saved af-ter every one thousand games of training. When the training needs to beresumed, the program just reads the weight being saved at the previoustraining.Besides testing with Bi-dire
tion with a maximum of 10,000 hands, exper-iments are also
ondu
ted with single-dire
tion
ross-over with a maximum5,000 hands to see if it results in better performan
e. Instead of letting botharti�
ial neural networks to learn from ea
h other, what will happen if onlyone neural network learns from the other? One neural network does the sameas bi-dire
tion
ross-over, but the other just adds Gaussian noise. Be
auseof time
onstraints, these agents using single-dire
tion were only trained halfas mu
h as in the
ase of bi-dire
tion
ross-over. But amazingly the perfor-man
e is almost as good as the bi-dire
tion
ross-over. The results are shownin Se
tion 4.

4 Training results 174 Training resultsAfter explaining about the working of the neural network and the heuristi
fun
tion in Se
tion 3, let us see how ea
h agent performs. To test what rangeof random noise to add to the weights, the average hands per game weremeasured. First using a random noise between �0:01 and 0.01 (Figure 7),then using a random noise between �0:0001 and 0.0001 (Figure 8). The av-erage hands per game using a bigger random noise interval are signi�
antlyless than when using smaller random noise interval. It seems to be ideal touse the random noise whi
h leads to less average hands per game, howeverthe weights of the neural were too fast and too mu
h using a random noisebetween �0:01 and 0.01. The
hanges in random noise were mu
h biggerthan the
hanges of the neural network using
ross-over. After 50,000 games,some of the weights were already above 130. Figure 7 below show the averagehands/turns per game. The training was done using 100,000 games, 25,000epo
hs with a random noise between �0:01 and 0.01.Figure 7 below show what the average hands/turns per game. The train-ing was done using 100,000 games, 25,000 epo
hs with a random noise be-tween �0:01 and 0.01.

Figure 7: Average hands per game with random noise between �0:01 and0.01

4 Training results 18The number of average hands per game using random noise between�0:0001 and 0.0001 are mu
h higher. This is be
ause of the extra adjust-ment needed to
hange the weights. After ea
h adjustment the weights are
hanged at most with 0.0001. Figure 8 gives the average hands per game withrandom noise between �0:0001 and 0.0001.

Figure 8: Average hands per game with random noise between �0:0001 and0.0001In the experiment with bigger random noise, the best result seems to beat a training sample of 45,000. The number of turns with bigger randomnoise is signi�
antly smaller than the test with smaller random noise. After500,000 trainings with random noise between �0:0001 and 0.0001, there isstill no
lear sign of de
rease in the number of hands per game, perhaps moretraining is needed.We now des
ribe some experiments with di�erent strategies. Rand1 isa random player that takes and throws away
ards randomly. Using no strat-egy at all. Rand2 is similar to the other \players" using the same heuristi
fun
tion to de
ide whi
h
ard to throw, but does not have a Arti�
ial Neu-ral Network (ANN) to de
ide whi
h
ards to take. It just takes randomlyfrom the dis
ard pile and the draw pile. Below are 3 di�erent tables. Ea
htable show the results of a mat
h between the di�erent \players". All playersplays against everybody, ex
ept itself. Table 1 shows the results of \players"

4 Training results 19! wins# lose Rand1 Rand2 Cross 5% Cross 5% Cross 10% Cross 10%4 games 6 games 4 games 6 gamesRand1 X 918 930 922 925 928Rand2 0 X 606 637 617 621Cross 5%, 0 385 X 505 498 4944 gamesCross 5%, 0 348 495 X 499 4966 gamesCross 10%, 0 377 495 494 X 4974 gamesCross 10%, 0 372 503 499 499 X6 games Table 1: Standard begin-weight with random noise.trained using standard begin-weight with random noise. Rand1 and Rand2don't use any neural network at all. Rand1 is
ompletely random and Rand2takes random, but uses the same throw
ard fun
tion as the rest. Table 2uses random begin weight with Gaussian noise and Table 3 standard begin-weight with Gaussian noise. All the players were trained 500,000 games withthe neural network before entering the mat
h.The experiments done in Table 1, 2 and 3 all use bi-dire
tion
ross-over.To see if single-dire
tion makes any di�eren
e, experiments were done usingsingle-dire
tion
ross-over. Table 4 shows the result of the tournament ofthe agents/players using single-dire
tion
ross-over. Due to time
onstraints,the players using single-dire
tion
ross-over were only trained 250,000 times.However, it seems that the result are almost as good as using bi-dire
tion
ross-over. With fewer
ross-overs, the neural network
an train more gamesper hour making it learns \better".As we
an see from the tables, the methods we used to train the playersdoes have in
uen
e on the out
ome of the experiments. Table 2 and Table3 both use the same Gaussian noise fun
tion, have the same players, butdi�er in begin-weights. Table 2 use random begin-weights, while Table 3 usestandard begin-weights. When playing against player \Rand 2", the playertrained with
ross 5 % in 4 games perform the best in Table 2, while theplayer trained with
ross 10 % 6 games does the better job in Table 3.

4 Training results 20
! wins# lose Rand1 Rand2 Cross 5% Cross 5% Cross 10% Cross 10%4 games 6 games 4 games 6 gamesRand1 X 918 920 923 926 932Rand2 0 X 602 588 588 581Cross 5%, 0 384 X 504 499 4954 gamesCross 5%, 0 405 490 X 498 5166 gamesCross 10%, 0 405 498 498 X 5034 gamesCross 10%, 0 404 502 481 493 X6 games Table 2: Random begin-weight with Gaussian noise.
! wins# lose Rand1 Rand2 Cross 5% Cross 5% Cross 10% Cross 10%4 games 6 games 4 games 6 gamesRand1 X 918 929 911 928 913Rand2 0 X 584 593 594 622Cross 5%, 0 408 X 481 518 5274 gamesCross 5%, 0 394 518 X 479 4676 gamesCross 10%, 0 396 473 516 X 4994 gamesCross 10%, 0 363 464 527 495 X6 games Table 3: Standard begin-weight with Gaussian noise.

4 Training results 21! wins# lose Rand1 Rand2 Cross 5% Cross 5% Cross 10% Cross 10%4 games 6 games 4 games 6 gamesRand1 X 918 966 962 964 972Rand2 0 X 573 589 581 581Cross 5%, 0 421 X 476 496 4864 gamesCross 5%, 0 403 518 X 488 4926 gamesCross 10%, 0 406 496 507 X 4944 gamesCross 10%, 0 409 511 499 497 X6 gamesTable 4: Single-dire
tion
ross-over after 250,000 trainings.Table 2 and Table 4 di�er in the way
ross-over is being done. Table 2 usebi-dire
tion
ros-sover (both players learn from ea
h other), while Table 4 usea single-dire
tion
ross-over (only one player is learning). Judging from theresults played with player \Rand 2", using bi-dire
tion
ross-over performsslightly better than single-dire
tion
ross-over in general.Player \Rand 2" uses the same heuristi
 fun
tion to throw
ard, but doesnot have a neural network to
ompute where to pi
k the
ard from (dis
ardpile or draw pile). When judging the performan
e of the di�erent players, itis easier to ben
hmark them with player \Rand 2".

5 Dis
ussion & Con
lusion 225 Dis
ussion & Con
lusion5.1 Is ANN useful for solving Gin Rummy?Judging from the result of the three tables, it seems that there are no majordi�eren
es between using standard begin-weights (all weights are set to 1),and using random begin-weights, with Gaussian noise or with random noise.Comparing Table 2 and Table 3, there is no
lear eviden
e whi
h player per-forms better. In Table 2, it seems that the player trained with
ross-over 5%in 4 games performs better than the rest when playing against Rand2. InTable 3, it is the player who is trained with
ross-over 10% in 6 games thatdoes the better job when playing against Rand2. This
on
lusion is arguable,sin
e other players do better in other mat
hes. In either way, the results showthat using an Arti�
ial Neural Network, does perform better than Rand2,a player that does the same as the other players, but that does not have aneural network and takes
ard randomly. Perhaps the neural network needsto be trained mu
h longer, or perhaps the random noise and Gaussian noiseare in
uen
ing the neural network too mu
h.Table 4 shows the result using single-dire
tion
ross-over. With half asmu
h training as bi-dire
tion, single-dire
tion
ross-over performs quite good.Using single-dire
tion, a higher number of trainings per hour
an be rea
hedthan with bi-dire
tion
ross-over. However, from the experiments and theresults shown in all four tables, it does not really matter whi
h player/agentsyou
hoose, no matter how small the adjustment after ea
h evaluation round.When the Arti�
ial Neural Network is trained long enough, the performan
ewill in
rease. But the number of games training will most likely in
rease mu
hfaster than the performan
e.We
an indeed use Arti�
ial Neural Network to solve Gin Rummy. Aslong as the neural networks are trained long enough, it does not matter ifyou
hoose bi-dire
tion or single-dire
tion,
ross-over 5% or 10%, the perfor-man
e will in
rease. However,
hoosing the right one, will save the networka lot of training time.5.2 Further resear
hDue to time
onstraints, it was not possible to train and test every possible
ombination of the several parameters. For example,
ross-over 15% insteadof 5% and 10%,
ross-over after 8 games played instead of 4 or 6 games. Fur-ther training of the
urrent setup is needed to see whi
h setup yields a better

5.2 Further resear
h 23performan
e in shortest time. Another possibility is to Improve the heuristi
fun
tion to throw
ards. Tests
an also be done using more than 27 nodes (26hidden nodes + 1 bias node) in the hidden layer or add another hidden layerbetween the
urrent hidden layer and the output layer. The neural network
an also further be improved by playing with experts and using dataming[13℄ to adjust the weights of the Arti�
ial Neural Network.Beside of using an Arti�
ial Neural Network to solved Gin Rummy, we
an also use
o-evolutionary learning to solve other (
ard) games like Poker,Bridge, Hearts, Che
kers.

REFERENCES 24Referen
es[1℄ Gerald Tesauro (2002), Programming ba
kgammon using self-tea
hingneural nets. Arti�
ial intelligen
e 134 (2002), 181{199.[2℄ Jordan B. Polla
k, Alan D. Blair & Mark Land (1996), Coevolutionof a Ba
kgammon Player. Pro
eedings of the �fth AI
onferen
e, May1996, Nara, Japan.[3℄ Kimon Tsinteris, David Wilson (2001), TD-learning, neural network,and ba
kgammon.http://www.
s.
ornell.edu/boom/2001sp/Tsinteris/gammon.htm.[4℄ Gerald Tesauro (1995), Temporal Di�eren
e Learning and TD-gammon. Communi
ations of the ACM, vol. 38, no. 3.[5℄ Jonathan Baxter, Andrew Tridgell & Lex Weaver (1998),TDLeaf(lambda): Combining Temporal Di�eren
e Learning withGame-Tree Sear
h. Australian Journal of Intelligent InformationPro
essing Systems, Vol. 5 No. 1 (1998), 39{43.[6℄ Cl�ord Kotnik, Jugal Kalita (2003), The Signi�
an
e of Temporal-Di�eren
e Learning in Self-Play Training, TD-rummy versus EVO-rummy. University of Colorado at Colorado Springs.[7℄ Gerald Tesauro (1992), Pra
ti
al Issues in Temporal Di�eren
e Learn-ing. Ma
hine Learning 8, 257{277.[8℄ Stuart Russell, Peter Norvig (2003), Arti�
ial Intelligen
e, A modernapproa
h. Prenti
e Hall, se
ond edition.[9℄ Walter B. Gibson (1974), Hoyle's Modern En
y
lopedia of Card Games.New York: Doubleday.[10℄ Gin Rummy game history.http://www.playjava.
om/gin rummy game history.html[11℄ W. A. Kosters (2006), Kunstmatige Intelligentie
ollege sheets, Univer-sity Leiden, http://www.lia
s.nl/~kosters/AI[12℄ G. de Croon, M.F. van Dartel & E.O. Postma (2005), Evolution-ary Learning Outperforms Reinfor
ement Learning on Non-MarkovianTasks. University Maastri
ht, The Netherlands.

REFERENCES 25[13℄ W. A. Kosters (2002), Dealing with the Data Flood: Mining Data, Textand Multimedia (J. Meij, editor), STT/Beweton, The Hague, Chapter6.2.8, 641{645.

