SubCVS: merging version control systems in a sehdsed repository browser

Table of Contents

1 Context 2
2 Problem statement 2
3 Related work 2
4 Solution approach 3
4.1 Separation isthe key 3
4.2 TheModuleclass 3
4.3 Directory contents 5
4.4 Binaryinstead of library 6
45 Global software structure 7
5 Case study 8
6 Conclusion 9
7 Discussion 9
8 References 10

SubCVS: merging version control systems in a sehdsed repository browser

1 Context

Programming projects are often done in teams. ifikisduces the need for version control systems,
to solve conflicts that may occur when multiplegmers work on the same set of files
simultaneously. Version control systems use sedakpositories to manage and store projects.
Within the software engineering industry there gpacific need for an easy way to browse these
repositories and exploit their possibilities (comgfle versions, view change logs, add and remove
files and so on). A Java servlet would be the i@ge@ironment for such an application.

Two well-known version control systems are G\(Soncurrent Versions System) and Subvefsion
the latter being a follow-up of the former. Partaoly within LIACS ° these systems are widely
used. The most important differencées:

* In Subversion, commits are atomic. This meansahantire commit is either accepted or
rejected, regardless of the number of changeddile=e the previous commit. In CVS, this
is only guaranteed per file, which means that ectisfinay occur when multiple users
commit at roughly the same time.

» CVS revision numbers are per file, Subversion iexis are per commit.

* In a Subversion repository, files can be renameitevdonserving version information and
directories can be versioned.

» Subversion handles binary files more efficiently.

2 Problem statement

A servlet-based browser application that supparth VS and Subversion repositories does not
exist. There are examples of universal repositooybers, but they are written in PHP or other
scripting languages. We particularly need the pcanetr ease of deployment offered by Java
servlets. Existing solutions written in a servievieonment are typically focused on a single type o
repository (see 'Related work' section). Usualiy thcus is too strong to be able to integrate
support for another version control system withtootmuch effort.

Increasing the scope of an existing applicatiomé¢tude support for a second repository type is not
only a difficult task. If we want to keep the pragr code structural and clean, it also requires such
a large refactoring that a developer would be beffestarting from scratch. A new application,
intended to support multiple systems in the fitacp, will also be much easier to extend further in
the future.

3 Reated work

At LIACS, an application called jCVS Senvtés nowadays used to browse CVS projects. It needs
jCVS® (a Java shell around CVS) for repository commutitvea Similar applications for browsing
Subversion projects are, for instance, Svehéom SVN Webclierdt These applications use the
JavaSVN shell to communicate with a Subversion server.

All of them, however, can only handle projects colted by a specific versioning system. A
system-independent approach to browsing and magagpositories sounds logical, but is yet
unknown.

SubCVS: merging version control systems in a sehdsed repository browser

4 Solution approach
The primary aspects of the application to be build:

« Itis written as a Java servlet and runs on an Apdomcat server.

* The main features of JCVS Servlet are available.

* CVS and Subversion repositories are supported.

* Itis easy to extend the application with additidoactionality or system support.
* The look and feel is consistent, regardless oféipesitory type.

4.1 Separation isthe key

The main idea behind the solution is to separaealisation from implementation. In other words:
the visual aspect should be generic and the undgri;mplementation should be specific for the
system concerned. This can be accomplished bydintinog a system-independent layer between
the visual layer and the repository layer. The feyer is a model that represents a project
regardless of its type. A big advantage at thisiosithat version control systems largely suppby t
same sort of information, which makes it quite easgefine a generic model.

For any kind of request to the application, the elasl constructed through system-specific
functions. However, in the end, it is always stowally the same. Therefore it can be presented to
the user in a generic form. A key point is thatfsialisation layer of the application never has t
depend its behaviour on the repository type corezkrin other words: once the model is
constructed, the type of project is irrelevantite servlet.

4.2 The Module class

In programming terms, the separation into layeecomplished by using inheritance. We define a
generic 'Module' class that represents a projeatrgpository. The Module class is in fact the
model mentioned earlier. Derived classes called i@v@ile and SVNModule extend and override
its behaviour when needed. This is not always #se cFor example, retrieving the name of a
Module is a generic function. However, retrievihg tontents of a directory is different task in
CVS and Subversion modules. Generic functions aledefined in the Module class. Specific
functions are also defined in the Module class,dvatoverridden by its subclasses to correctly
access the repository concerned. This way, the-Bod only has to 'know' Module and its features.
When Module is accessed, Java takes care of tegaten to the correct subclass, if needed.

This structure (see Figure 1) also makes it eaggltbsupport for another system. Simply defining a
third subclass of Module that overrides its behaviwhen needed, would do the job.

SubCVS: merging version control systems in a sehdsed repository browser

Module

PR
SyNModule (?Module }
~ -
-
|
[
|
_

CVEModule

- -
-

~
CVS Repository SVWN Repository) | 7 Repository)
~ -

-
-‘_'-—..-'-'-H‘

Figure1l: UML Use Case Diagram

Module and its subclasses are defined as followsthe sake of clarity only the methods are listed.

public class Mdule {
public Mdul e(String nane, String host, String root, String user, String pass);

public String getType();

public String get Name();

public String getHost();

public String getRoot();

public String getUser();

public String getPass();

public Vector getDirectoryContents(String directory, String orderBy);
public Vector conbineDirectoryContents(Vector directories, Vector files, String orderBy);
public File getCheckoutDir();

public File getLocal RootDir();

public void setLocal RootDir(String checkoutDir);

publ i c bool ean i sCheckedCQut ();

public void checkout ();

public String checkoutFile(String filePath, String revision);

public void update();

public Vector log(String filePath);

public Vector diff(String filePath, String revisionl, String revision2);
public void add(String filePath, String | ogMessage, bool ean binary);
public void renpve(String filePath, String | ogMessage);

public void commt(String | ogMessage);

public String[] conbineArgs(String[] conmmandArgs);
public void execute(String[] commandArgs, File dir);
public void executeCnd(String[] args, File dir);

public void addQutputLine(String |line);
public void addQutput StringLine(String line);

SubCVS: merging version control systems in a sehdsed repository browser

public class CvSMdul e extends Mdul e {
public CVSMbdul e(String nane, String host, String root, String user, String pass);

public String getType();
public Vector getDirectoryContents(String directory, String orderBy);

public void checkout ();
public String checkoutFile(String filePath, String revision);
public Vector log(String filePath);
public Vector diff(String filePath, String revisionl, String revision2);
public void add(String filePath, String | ogMessage, bool ean binary);
public void renpve(String filePath, String | ogMessage);

}

public class SVNWbdul e extends Mdul e {
public SVNWbdul e(String nane, String host, String root, String user, String pass);

public String getType();
public Vector getDirectoryContents(String directory, String orderBy);

public void checkout ();
public String checkoutFile(String filePath, String revision);
public Vector log(String filePath);
public Vector diff(String filePath, String revisionl, String revision2);
public void add(String filePath, String | ogMessage, bool ean binary);
public void remove(String filePath, String | ogMessage);

}

Module's constructor takes five arguments. Togetiey globally define a project, regardless of its
type. Some specific variables are also neededinBtance, CVS and Subversion commands should
be prefixed with a certain combination of usernapassword, et cetera. This combination is
defined by the constructor of the subclass, wisateiled after executing the parent constructor.
The combineArgs method makes sure the combinatiadded to each command before execution.

As you can see, CVSModule and SVNModule implemeat#y the same methods. They override
the corresponding methods in the parent class.ifimgediately shows where the CVS
implementation differs from the Subversion impletagion. For example, CVSModule's log
method is implemented differently than SVNModuley method. However, their results are
structurally equal and can therefore be presemt@dgeneric way.

The update and commit methods are only defineddarModule class. These are examples of
generic methods. They can be used for both CVSSahaersion commands.

4.3 Directory contents

For a repository browser, a key point is to regiéve contents of a certain directory. CVS and
Subversion share the fact that information abositctimtents of a directory is stored in a
subdirectory that is only used by the system. Mmecific, in a CVS repository, each directory has
a subdirectory called 'CVS' in which the 'Entride’ contains all information we need. In a
Subversion repository, directories have a '.sviodsactory in which the 'entries' file is the most
important.

The getDirectoryContents methods in Module andutsclasses are used to read these files. In a
CVS Entries file, each line contains a file or dicdy name. For files, also the latest revisiost la
modified date and keyword substitution mode atedisFields are separated by slashes ('/").
Subversion uses a more complex XML (eXtensible Mprkanguagejormat to store entry
information. Java's SAXParser class is used toepthies Subversion entries files. While
implemented completely different, in the end bagtDgrectoryContents methods return a Vector of
Entry instances. The Entry class simply extendsa'daile class with the possibility to store and
retrieve author and revision information.

SubCVS: merging version control systems in a sehdsed repository browser

4.4 Binaryinstead of library

The first attempt on developing SubCVS used the§@vid JavaSVN libraries mentioned earlier to
interact with repositories. However, they were saima constraining in terms of executing
commands. Sometimes, the servlet needs to exeootearsion control commands, for instance a
‘cd' command to change the working directory. Timioduced the need for Java's Runtime class
and more specific, its exec method. While jCVS aadaSVN were actually only used as a
command prompt, the rest of these libraries wasadisgl to 'overkill'. It was far more efficient to
use the ordinary CVS and Subversion command-lieats. We could then drop the libraries and
execute all commands through Runtime.

This way, the output of commands was also easieapture. Two Java threads are used to collect
the output stream and the error stream. Threadequéred, because both streams may produce
lines in any order. This means that collecting tisaquentially (first the output stream, then the
error stream) may cause the application to hang.olitput is both collected as a Vector of
individual lines and as one big String, which imm&ocases is easier to parse.

Finally, Runtime's exec method takes a workingadoey as parameter, which makes it easy to
execute a command from within a certain directdhjs was a very welcome feature, because a
checkout command, for instance, should be exedutedwithin a different directory than a log
command.

So, another key point is that SubCVS does notaelthird-party libraries or Java shells. It only
requires the availability of the CVS and Subversstommand-line clients. In other words: the
locations of the CVS and Subversion executablesldhze included in the 'Path’ environment
variable. The application should function on magtatforms, as long as Tomcat and the command-
line clients are also supported.

SubCVS: merging version control systems in a sehdsed repository browser

45 Global software structure
The interaction between the different classes@SbbCVS package is illustrated in Figure 2.

* The ModuleManager class is used to store theflistanlules and to retrieve the Module
requested by the user. The SubCVS servlet theruteseone or more commands using this
Module instance.

* SVNEntryFileHandler is simply a parser for Subvensentries files.

* LogEntry represents a revision in the output of libgg command. The log methods in
Module's subclasses return a Vector of LogEntriaimses.

» Streamreaders are Threads used to collect thetooftprcommand.

» Entry represents a file or directory in a repositor

* EntryVectorComparator compares an Entry with arnoimery, for instance by name, size
or revision. This way, the contents of a directcay be sorted by a specific property.

Remark: the HttpServlet, Thread, File and DefautitHar classes and the Comparator interface are
existing Java tools extended or implemented bysela the SubCVS package.

HitpServiet
wexigndss
File interfaces HUSES® | 8uhCVS Thread
Comparator ===
|
/_'}. I T
| U |
wextandss | ModuleManager “uﬁesn ugrtgndss

|

i |

' |

I I |

| : HUSESn \.l/

Entry #USES® | EntryVectorComparator s Module wuses StreamReader DefaultHandler
aUSesSn
K---1_ | " T t----- 3
(________
uex‘t&nds:f Z‘smextial'ucls,so wexigndss
CvSModule SVNModule e SVNEntryFileHandler
—————— E

I I
| |
| |
| wuUsES® ausess |
| LogEntry |
| I

Figure2: UML Class Diagram

SubCVS: merging version control systems in a sehdsed repository browser

5 Casestudy

The SubCVS application was tested on a numberfigrdnt CVS and Subversion repositories
within LIACS.

The user specifies all the projects he or she wikedo include in a text file, called the modules
file. Six fields are needed for each project:

Repository type

Project name

Host address

Path to the project directory
Username

Password

ok wNE

The application parses the modules file and themiges access to the modules specified. From
that point, type and origin of projects are no lengsues. Users can browse and manage all
projects in a generic fashion. A list of features:

» Checkout or update a local copy of specified pitsjec

* Browse the contents of a project. If needed, al lcwackout is done first.

* View and sort files by name, size, revision, lastified date and author information. The
latter is only available for Subversion projects.

* Open, add or delete files. For CVS, the '-kb' aptian be specified when adding a binary
file. Subversion auto-detects this.

* Explore the 'log’ of a file, which contains inforimam about all revisions of the file since it
was imported into the version control system.

* View a specific revision of a file as ASCII.

» Compare two specific revisions of a file (the "QlifT his extends the possibilities of JCVS
Servlet, in which you could only compare a revisigth the previous one.

All features rely on the principle of executing amands and presenting the results, just like when
you are working with a CVS or Subversion clienedity on the command prompt. The difference
is that SubCVS provides access to common functioasmore user-friendly way. Also, users do
not need to know the specifics of version contystems, because multiple systems are supported
in one application. And finally, the output is peeted in a more human-readable form.

The basic working cycle of SUbCVS:

1. The user requests a page, for instance by cliakimg file or directory in the browser.

2. The request is translated into an appropriate camdrf@ the system concerned. In some
cases a generic command is enough.

3. The command is executed and its output is captured.

4. The output is parsed and translated into a systel@pendent form.

5. The result is visualized on screen.

The main point during development of SUbCVS wasréate a framework in which this cycle

could be carried out easily. Once that was accainedl, it was quite simple to add new
functionality, by extending the features of 'Modwed its subclasses and providing the servlet with
a way of presenting the results.

SubCVS: merging version control systems in a sehdsed repository browser

6 Conclusion

Previously, a servlet-based web application to sevepositories with support for multiple version
control systems did not exist. The SubCVS projetbduces this functionality. Testing the
application has shown that SubCVS in fact can dojtib, which makes it a very welcome addition
to a software engineers set of tools.

7 Discussion

Of course in any project there is room for improesam The SubCVS application could, for
instance, be extended with the following functiatyal

» change and commit files;

» add, delete and change directories;

* project history viewer;

e support for other version control systems.

SubCVS: merging version control systems in a sehdsed repository browser

References

CVS (Concurrent Versions Systerjtp://www.nongnu.org/cvs

Subversionhttp://subversion.tigris.org

LIACS (Leiden Institute of Advanced Computer Sciendttp://www.liacs.nl

JCVS Servlethttp://www.gjt.org/servlets/JCVSlet

JCVS: http://www.jcvs.org

Sventon:http://sventon.berlios.de

SVN Webclienthttp://www.polarion.org/index.php?page=overview&jeai=svnwebclient

JavaSVNhttp://www.tmate.org/svn

Apache Tomcathttp://tomcat.apache.org

10 David Neary, Subversion - a better C\Hip://www.linux.ie/articles/subversion

11.Karl Fogel & Moshe Bar, Open Source Developmenhv@v's - 2¢ Edition, Coriolis,
2001, ISBN 158880173X

12.Jason Brittain & lan F. Darwin, Tomcat - The Detive Guide, O'Reilly, 2003, ISBN

0596003188

CoNoOGO~WNE

10

