
Internal Report 2010–6 June 2010

Universiteit Leiden

Opleiding Informatica

A Pushdown System Representation

for Unbounded Object Creation

Jurriaan Rot

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

A Pushdown System Representation
for Unbounded Object Creation

Jurriaan Rot1, Frank de Boer1,2, Marcello Bonsangue1,2

1 LIACS – Leiden University
2 Centrum voor Wiskunde en Informatica (CWI)
jrot@liacs.nl,frb@cwi.nl,marcello@liacs.nl

Abstract. We introduce a block-structured programming language which
supports object creation, global variables, static scope and recursive pro-
cedures with local variables. Because of the combination of recursion,
local variables and object creation, the number of objects stored dur-
ing a computation is potentially unbounded. However, we show that a
program can be viewed as a type of pushdown automata, for which the
halting problem as well as LTL and CTL model checking are decidable.

Key words: object creation, model checking, pushdown systems, push-
down automata

1 Introduction

From the 1960s onwards imperative programming has evolved with the intro-
duction of high-level programming constructs for mastering the complexity of
software by abstraction, encapsulation and modularity. The initial description
of computation in terms of assignment statements to change a program state,
sequential and conditional composition, and conditional looping [10] has been
extended with procedures in combination with block structures which enable the
construction and declaration of complex state changes abstracting from the con-
crete implementation [19]. Pointers are a very flexible programming mechanism,
allowing manipulation of dynamically growing and potentially unbounded data
structures. In the eighties mainstream imperative programming languages added
the support of objects [23], a collection of procedures acting on an encapsulated
state, having an identity that can be referred to by other objects. Other powerful
programming techniques like inheritance and polymorphism enable code reuse,
and are crucial for programming-in-the-large [22].

The increasing flexibility in programming comes, however, with an increasing
complexity in reasoning about programs. Model checking is a technique for ex-
haustively checking a (model of a) program for possible errors [4]. Traditionally,
in order to guarantee termination of a model checking procedure, finite-state
models are required, and thus only programs over finite data domains are con-
sidered. But to program with dynamical data structures, objects may need to
be created, removed and modified when moving from a state to another in a

A Pushdown System Representation for Unbounded Object Creation 3

computation. Thus, by their very nature, objects are unbounded: for example,
during a recursive computation new objects can be created infinitely often. In
order to achieve finite-state models for object-oriented programs, different types
of abstraction and restrictions of programs have been considered (see related
work below). Typically one disallows object creation and considers only a finite
number of objects already existing before the computation starts, or allows for
object creation only within restricted forms of recursion. However, the neces-
sity to restrict programs before their analysis limits the applicability of model
checking techniques to modern imperative programming languages.

In this paper we introduce a simple block-structured programming language
which supports object creation, global variables, static scope and recursive pro-
cedures with local variables. In order to focus on the main issues, we restrict to
a single but unbounded data structure, namely that of object identities. Other
finite data domains could have been added without problem, but would have
increased the complexity of the model without strengthening our main result.
Although very simple, the language is powerful enough to encode the control
flow of high-level imperative programming languages including closed class-based
object-oriented programs, like Java. Because of the combination of recursion with
local variables, a program may have infinitely many different states. Since we
allow to store object references into local variables, the number of objects stored
during a computation is potentially unbounded.

For our language we define two semantics: a concrete one that is infinite state,
and a symbolic one that is also infinite state but is based on an enhanced version
of the model of recursive procedures with local variables via a suitable pushdown
system [12]. A pushdown system is a simple type of pushdown automaton used
to generate behavior rather than to accept languages [5]. It provides a finite rep-
resentation generating infinite state systems, where a state consists of a control
part and a stack. In our model of a pushdown system global variables and the
current local variables form the control states, whereas the current executing
statement is on top of the stack. Actually it is more common to model only the
global variables in the control state, while the local variables and the control
point are (part of) the top of the stack (see e.g. [21]). We chose our approach
for convenience in the proofs, but it can easily be modified to the more common
approach. In our model, when a procedure is called, a copy of the current local
variables is stored on the stack to recover the original values after the procedure
returns, and the local variables in the control state are initialized again. In order
to achieve finitely many control states, we abstract from the concrete identities
of the objects, but maintain their symmetries, i.e. the equality relation among
object identities [13]. Our main result is that the concrete and the symbolic
semantics are strongly bisimilar.

Reachability for an infinite state system is generally undecidable. However,
for a pushdown system it turns out that both the halting problem and reach-
ability are decidable [16]. In fact, it is possible to model check pushdown sys-
tems against linear-time or branching-time temporal formulas. For linear-time

4 Jurriaan Rot, Frank de Boer, Marcello Bonsangue

temporal formulas the complexity is even of the same order as for finite state
systems [5].

This paper is organized as follows. In Section 2, we introduce the syntax
of our language and give an informal description of its semantics. Section 3
provides a concrete execution model using a transition system on infinite states,
and in Section 4 we describe the construction for the symbolic semantics based
on pushdown systems. The relationship between these two models is studied in
Section 5. Finally, the last section discusses some relevant consequences of our
result, and possible future steps.

Related work. Currently there are several model checkers for object oriented
languages. Java Path Finder [14] is basically a Java Virtual Machine that exe-
cutes a Java program not just once but in all possible ways, using backtracking
and restoring the state during the state-space exploration. Even if Java Path
Finder is capable of checking every Java program, the number of states stored
during the exploration is a limit on what can be effectively checked. As with
JCAT [9], Java source code can be translated into Promela, the input language
of SPIN [15]. Since Promela does not support dynamic data structures, they
have to allocate fixed-size heaps and stacks.

Bandera [8] is an integrated collection of tools for model-checking concur-
rent Java software using state-of-the art abstraction, partial order reductions
and slicing techniques to reduce the state space. It compiles Java source code
into a reduced program model expressed in the input language of other exist-
ing verification tools. For example, it can be combined with the SAL (Symbolic
Analysis Laboratory) model checker [18] that uses unbounded arrays whose sizes
vary dynamically to store objects. In order to explore all reachable states model
checking is restricted to Java programs with a bounded (but not fixed a priori)
number of objects.

Model checking of a possibly unbounded number of objects but for a language
with a restricted form of recursion (tail recursion) and no block structure has
been studied using high level allocation Büchi automata [11], a generalization of
history dependent automata [17] that enables for a finite state symbolic seman-
tics very similar to ours. Full recursion, but with a fixed-size number of objects
is instead considered in jMoped [12], using a pushdown structure to generate an
infinite state system.

The current state of the art of model checking approaches for languages
with object creation and full recursion in terms of concrete memory addresses,
require an a priori bound on the size of the heap for reachability analysis (e.g.
[6]). In order to overcome this problem, the main contribution of this paper is
the precise abstraction of the heap in terms of equivalence classes of program
variables which refer to the same memory address.

2 A simple imperative language with object creation

This section introduces a simple programming language that supports object
creation, global and local variables, and recursive procedures. To simplify the

A Pushdown System Representation for Unbounded Object Creation 5

presentation it is restricted to a single data structure, that of object identities.
A program consists of a finite set of procedures, each acting on some global and
local state. Procedures can store identities in global or local variables, compare
them, and call other procedures.

We assume a finite set of program variables V ranged over by x, y, . . . such
that V = G ∪ L, where G is a set of global variables {g1, g2, . . . , gn} and L is a
set of local variables {l1, l2, . . . , lm}, with G and L disjoint. For P a finite set of
procedure names {p0, . . . , pk}, a program is a set of procedure declarations of the
form pi :: Bi, where Bi, denoting the body of the procedure pi, is a statement
defined by the following grammar

B ::= x := y | x := new | B;B | [x = y]B | [x 6= y]B | B +B | p .

Here x and y are program (local or global) variables in V , and p is a procedure
name in P . The procedure p0 ∈ P is called the initial procedure of a program.

The language is statically scoped. The assignment statement x := y assigns
the identity stored in y (if any) to x. If x was already referring to an object
identity, this gets lost. In particular, if x is the only variable of the program
referring to an object o, then after an assignment x := y, the object o cannot be
referenced anymore and gets lost forever. The statement x := new creates a new
object that will be referred to by the program variable x. As for the ordinary
assignment, the old value of x is lost. In a program execution, a program variable
x is said to be defined if there was an assignment or object creation statement
earlier in the execution with the variable x at left–hand side. Sequential composi-
tion B1;B2, conditional statements [x = y]B and [x 6= y]B and nondeterministic
choice B1 +B2 have the standard interpretation. A procedure call p means that
the body B associated with p is executed next on the same global state but on
a new fresh local state. After the procedure body terminates, its local state is
destroyed forever and the previous local state (from which the procedure has
been called) is restored. Changes to the global state, however, remain.

More general boolean expressions in conditional statements can be obtained
by using sequential composition and nondeterministic choice. In fact (b1 ∧ b2)B
can be written as (b1)b2B, whereas (b1 ∨ b2)B as (b1B) + (b2B). Negation of
a boolean expression b can be obtained by transforming b into an equivalent
boolean expression in conjunctive disjunctive normal form, for which negation
of the simple expression [x = y] and [x 6= y] is defined as expected.

Ordinary while, skip, and if-then-else statements can be expressed easily in
the language, using recursive procedures, conditional statements and nondeter-
ministic choice. For the sake of simplicity, we allow creation and assignment of a
single object identity only; generalizations to simultaneous assignments and ob-
ject creation can be added in a straightforward manner. We assume automatic
garbage collection of object identities that are not referenced anymore by any
global variables or instances of local variables in a program execution.

The language does not directly support parameter passing. However, it is
worthwhile to note that we can model procedures with call-by-value parame-
ters by means of global variables. Let p(v1, . . . , vn) be a procedure with formal

6 Jurriaan Rot, Frank de Boer, Marcello Bonsangue

parameters v1, . . . , vn. We see the formal parameters as local variables and in-
troduce for each parameter vi a corresponding global variable gi (which does not
appear in the given program). Every procedure call p(x1, . . . , xn) can be modeled
by the statement g1 := x1; . . . ; gn := xn; p whereas the body B of p(v1, . . . , vn)
can be modeled by v1 := g1; . . . ; vn := gn;B. A similar approach can be taken to
model procedures with return values. Finally, method calls x.m(x1, . . . , xn) then
can be modeled by introducing the called object x as an additional ’parameter’
of the procedure m.

3 Transition System Semantics

In this section, we introduce a semantics of the programming language which
is defined in terms of an explicit representation of objects by natural numbers.
This representation allows a simple implementation of object creation. A program
state of a program is a function

s : V −→ N⊥,

where N⊥ = N∪{⊥} (⊥ is used to denote “undefined”). To model object creation
we distinguish a global “system” variable c which is used as a counter, and is
not used by programs. We implicitly assume that s(c) 6= ⊥, for every state s.

A configuration of a program is a pair 〈s, S〉 where s is a program state and
S is a stack of statements and local states. An execution step of a program is a
transition from a configuration C to a configuration C ′, denoted by C −→ C ′.
The possible execution steps are given below. For modeling state updates we
use multiple assignments of the form s[x1, . . . , xn := v1, . . . , vn], where xi and
xj are distinct, for i 6= j. The head of a stack is separated from the tail with
the right-associative operator •; for example, S′ = e • S is the stack consisting
of head e and tail S.

〈s,B1;B2 • S〉 −→ 〈s,B1 •B2 • S〉 (1)

s(y) 6= ⊥
〈s, x := y • S〉 −→ 〈s[x := s(y)], S〉

(2)

〈s, x := new • S〉 −→ 〈s[x, c := c, c+ 1], S〉 (3)

s(x) = s(y) s(x) 6= ⊥
〈s, [x = y]B • S〉 −→ 〈s,B • S〉

(4)

s(x) 6= s(y) s(x) 6= ⊥ s(y) 6= ⊥
〈s, [x 6= y]B • S〉 −→ 〈s,B • S〉

(5)

〈s,B1 +B2 • S〉 −→ 〈s,Bi • S〉 (i ∈ {1, 2}) (6)

A Pushdown System Representation for Unbounded Object Creation 7

〈s, pi • S〉 −→ 〈s′, Bi • s • S〉 (7)

where s′(l) = ⊥, for every local variable l and s′(g) = s(g), for every global
variable g.

〈s, s′ • S〉 −→ 〈s[l̄ := s′(l̄)], S〉 (8)

where l̄ denotes the sequence of local variables l1, . . . , lm and s′(l̄) denotes the
sequence of values s′(l1), . . . , s′(lm).

For technical convenience only, a procedure call pushes onto the stack as local
environment the entire state. Further, we assume a distinguished global variable
’nil’ such that s(nil) = ⊥, for every state s. The following corollary states some
basic properties of the semantic rule 8.

Corollary 1. If 〈s, s′ • S〉 −→ 〈s′′, S〉 then for every x, y ∈ V :

1. x and y are both global implies s′′(x) = s′′(y) iff s(x) = s(y),
2. x and y are both local implies s′′(x) = s′′(y) iff s′(x) = s′(y),
3. x is global and y is local implies s′′(x) = s′′(y) iff s(x) = s′(y).

Proof. It suffices to observe that by definition of the rule 8 we have s′′(g) = s(g)
and s′′(l) = s′(l), for every global g and every local l. ut

Further, we have the following invariance property about the flow of infor-
mation between the current state and the stacked states.

Lemma 1. For every computation 〈s0, p0〉 −→∗ 〈s, S〉, variable z, local variable
l and local state s′ appearing in S, we have s(z) = s′(l) iff there exists a global
variable g such that s(z) = s′(g) and s′(l) = s′(g).

Proof. The proof is by induction on the length of the computation. The basis of
the induction is trivial because the stack of the initial configuration only contains
the statement p0.

It suffices to show that every production respects the property. First note that
for any rule except 7, no new states are added to the stack so we only need show
that the resulting state still satisfies the equivalence. In rule 1, 4, 5 and 6 we have
s = s′ so the equivalence holds by the induction hypothesis. In the assignment
rule 2, the resulting state is s[x := s(y)]. Now if z ≡ x (≡ denotes syntactic
identity) then s[x := s(y)](z) = s(y) and if z 6≡ x then s[x := s(y)](z) = s(z).
In both cases, the result follows from the induction hypothesis. In rule 3, the
resulting state is s[x, c := c, c + 1]. It follows that s[x, c := c, c + 1](y) = s(y)
and s[x, c := c, c + 1](x) 6= s(y), for all y 6≡ x. The result then follows from the
induction hypothesis. Rule 7, the procedure call, adds the state s to the top of the
stack. Since the values of the locals are ⊥ in the resulting state, and the values
of globals in the resulting state are equal to their value in s, by the induction
hypothesis the equivalence holds for every state in the resulting stack including
s. Lastly for rule 8 does not alter the globals. For the locals, the result follows
from the induction hypothesis for the popped abstract state. Note that there
exists a computation 〈s0, p0〉 −→ 〈s′, S〉, where s′ denotes the popped abstract
state. ut

8 Jurriaan Rot, Frank de Boer, Marcello Bonsangue

4 Pushdown System Semantics

The above semantics gives rise to an infinite state system because of unbounded
recursion, and because of the representation of objects by natural numbers used
to model unbounded object creation. Since we can only test objects for equal-
ity we can reduce this state-space by the introduction of equivalence classes of
variables, that is, two variables belong to the same equivalence class if they de-
note the same object. However local variables can generate again an unbounded
number of equivalence classes. We show in this section how we can restrict to
an apriori finite number of equivalence classes of variables by the introduction
of so-called “freeze” variables, which will be used to compare the partitions of
variables before and after executing a procedure call. This will allows for a real-
location of the global variables with respect to the local variables of the caller.
To do this, we associate with each global variable g a fresh and unique local
variable g′ (which we assume does not appear in the given program).

An abstract program state now consists of a partition of global and local
variables (including the freeze variables). To facilitate easy treatment of such a
partition, we represent it as a function

σ : V −→ |V |+ 1

where |V | is the cardinality of the set of variables V , and |V | + 1 is identified
with the set {0, . . . , |V |}. Thus two (distinct) variables x and y belong to the
same equivalence class iff σ(x) = σ(y). We use zero for the equivalence class of
variables which are undefined, e.g., σ(nil) = 0, for every abstract state σ.

A configuration of a program now is a pair 〈σ,Σ〉 where σ is an abstract state
as defined above and Σ is a stack of statements and abstract states. Because
of the way we model partitions of the set of variables V , rules 1, 2, 4, 5 and 6
directly apply in this model and are therefore not repeated here. The rule for
object creation is modified as follows.

〈σ, x := new •Σ〉 −→ 〈σ′, Σ〉 (9)

where σ′ = σ, if all indices except zero are used in σ, else σ′ = σ[x := i], where
i 6= 0 is the smallest index not already used by σ.

This new rule for object creation describes it in terms of an update of the
current partition of the variables V by isolating the variable x. This is achieved
by assigning to the variable x an index different from zero not in use. Note that
in case such an index does not exist the partition represented by σ consists of
singleton sets only and therefore is not affected by object creation, i.e., we do
not need to assign a new index to x because it is already isolated.

The rule for procedure calls is modified as follows.

〈σ, pi •Σ〉 −→ 〈σ′, Bi • σ •Σ〉 (10)

where σ′ = σ[l̄ := 0̄][g′ := σ(g)], g′ denotes the sequence g′1, . . . , g
′
n of freeze

variables and σ(g) denotes the sequence of indices σ(g1), . . . , σ(gn). Note that
σ[l̄ := 0̄](l) = 0, for every local variable l ∈ L.

A Pushdown System Representation for Unbounded Object Creation 9

A procedure call now additionally initializes the freeze variables by the values
of their corresponding global variables and stores the old abstract state onto the
stack. Note that execution of Bi does not affect the freeze variables.

Finally, the rule for returns from a procedure call is modified as follows.

〈σ, σ′ •Σ〉 −→ 〈σn, Σ〉 (11)

where σ0 = σ′ and for 0 < i ≤ n (where n is the number of globals) we define
σi by the following cascade of if-then-else statements:

– if σ(gi) = 0 then σi = σi−1[gi := 0] else
– if σ(gi) = σ(gj), for some j < i, then σi = σi−1[gi := σi−1(gj)] else
– if σ(gi) = σ(g′), for some freeze variable g′, then σi = σi−1[gi := σ′(g)] else
– if in σi−1 all indices except 0 are used then σi = σi−1 else
– σi = σi−1[gi := k′], where k′ 6= 0 is the smallest index not already used by
σi−1.

Upon return, which consitutes the ’heart of the matter’, we need to update
the stored partition σ′ by reallocating the global variables according to the new
partition described by σ. We do so by means of the freeze variables which rep-
resent in σ the partitioning of the global variables in σ′ and as such form a
reference point for comparison with the local variables in σ′. In other words,
a partition in σ′ containing global variables is represented in σ by the corre-
sponding freeze variables. Therefore, in case in σ a global variable gi is identified
with a freeze variable g′ we have to identify it with all the local variables which
belong to the partition of g in σ′. This is simply obtained by setting the index
of gi to σ′(g). Note that in fact σ′(g) = σ(g′). However, σ′(g) = σ′(g′) does not
hold in general because the freeze variable g′ represents the initial value of its
global variable g which may have been affected by the computation which led to
σ′. Further, we observe that the choice of a particular freeze variable does not
affect the reallocation because if two distinct freeze variables are identified in
σ, then so are their corresponding global variables in σ′. Finally, we note that
global variables which are “drifted away“ from these freeze variables can only
denote objects which are different from those denoted by the local variables in
σ′. Therefore for these variables new partitions have to be created. In order to
obtain suitable indices for these global variables we have defined the overall up-
date of σ′ incrementally by processing the global variables one by one. For each
global variable gi its reallocation is defined by σi as follows: if gi is undefined
in σ then so it is in σi, else if gi is identified by σ with some already processed
gj (j < i) then we set its index to that of gj in σi−1, else if gi is identified by
σ with some freeze variable then we set its index to that of the corresponding
global variable in σ′. In case none of the above holds then we have to create a
new partition for gi as in the new rule for object creation.

Example 1. We give an example of a derivation which illustrates the procedure
call and return. The state is represented as a partition. We assume p is a pro-
cedure name with body p :: B = g2 := new. Furthermore g1, g2 are global
variables, l1, l2 are local variabes.

10 Jurriaan Rot, Frank de Boer, Marcello Bonsangue

〈{{g1, l1}, {g2, l2}}, p •Σ〉 −→
(call) 〈{{g1, g′1}, {g2, g′2}, {l1, l2}}, g2 := new • {{g1, l1}, {g2, l2}} •Σ〉 −→
(creation) 〈{{g1, g′1}, {g′2}, {g2}, {l1, l2}}, {{g1, l1}, {g2, l2}} •Σ〉 −→
(return) 〈{{g1, l1}, {g2}, {l2}}, Σ〉

The first transition step pushes the current state unto the stack. The new
state separates all the local variables l1 and l2 (this set is indexed by zero which
indicates ”undefinedness“) and introduces the freeze variables. The execution
of g2 := new in the next transition step isolates the variable g2. Finally, upon
returning, g1 is still identified with l1 but both l2 and g2 are now isolated. It is
important to note that in the above computation we can also replace l1 and l2
by freeze variables of earlier procedure calls.

Each set of variables identified by an abstract state defines an object. Further,
as explained above, two sets of variables Vi and Vi+1 identified by the respective
abstract states σi and σi+1, which are stored consecutively (from bottom to top)
on a given stack Σ, define the same object if and only if there exists a global
variable g ∈ Vi for which its freeze variable g′ is in Vi+1. The equivalence relation
induced by this relation between the sets of variables stored on a given a stack
Σ represents the objects generated by Σ. Figure 1 depicts a chain of sets of
variables which denote the same object.

The following corollary states some basic properties of the semantic rule 8.

Corollary 2. If 〈σ, σ′ •Σ〉 −→ 〈σ′′, Σ〉 then for every x, y ∈ V :

1. x and y are both global implies σ′′(x) = σ′′(y) iff σ(x) = σ(y)
2. x and y are both local implies σ′′(x) = σ′′(y) iff σ′(x) = σ′(y)
3. x is global and y is local implies σ′′(x) = σ′′(y) iff there exists a global

variable g such that σ′(y) = σ′(g) and σ(x) = σ(g′)

Proof. The equivalences follow immediately from the construction of σ′′, stated
in rule 8. ut

Clearly the above semantics can be represented as a pushdown system (PDS).
A pushdown system is a triplet P = (Q,Γ,∆) where Q is a finite set of control
locations, Γ is a finite stack alphabet, and ∆ ⊆ (Q×Γ)× (Q×Γ ∗) is a finite set
of productions. A transition (q, γ, q′, γ̄) is enabled if control is at location q and
γ is at the top of the stack then control can move to location q′ by replacing γ
by the possible empty work of stack symbols γ̄.

In our case, for a given program p1 :: B1, . . . , pn :: Bn, the set of control
locations is defined by the finite abstract state space V −→ |V | + 1. In order

to define the stack alphabet we introduce the finite set
⋃k

i=1 cl(Bi) of possible
reachable statements where the closure of a statement B, denoted as cl(B), is
defined as follows.

– cl(x := y) = {x := y}
– cl(x := new) = {x := new}
– cl(B;B) = cl(B) ∪ cl(B)

A Pushdown System Representation for Unbounded Object Creation 11

V

= {...,g',...}

= {...,g,...}

V

n

j

V

V

i+1

i

Fig. 1. Chain in a Stack

– cl([x = y]B) = {[x = y]B} ∪ cl(B)
– cl([x 6= y]B) = {[x 6= y]B} ∪ cl(B)
– cl(B +B) = cl(B) ∪ cl(B)
– cl(p) = {p}

The stack alphabet Γ is then defined by the union of the abstract state space
and the above set of possible reachable statements. Finally, it is straightforward
to transform the rules of the above semantics into rules of a pushdown system,
simply by removing the common stack tail from the left- and righthand sides.

5 Equivalence between the two models

In this section the behavioural equivalence between the two models is shown
by establishing bisimilarity, which is widely accepted as the finest behavioural
equivalence one would want to impose. A (binary) symmetric relation R on the
states of a transition system which satisfies

if P −→ P ′ then there is a Q′ such that Q −→ Q′ and (P ′, Q′) ∈ R,

is called a bisimulation relation [20].
This definition applies to a single transition system – in our case, we use it

to establish equivalence between the two models. The states of the transition
system are pairs of configurations, and the transitions are execution steps of the
respective models.

We first define the following relation between abstract and concrete states.

12 Jurriaan Rot, Frank de Boer, Marcello Bonsangue

Definition 1. We define s ∼ σ by s(x) = s(y) iff σ(x) = σ(y), for every pair
of variables x and y.

Next we extend this relation to stacks and configurations as follows.

Definition 2. We define S ∼ Σ inductively by

– if S and Σ are both empty then S ∼ Σ
– if S ∼ Σ then B • S ∼ B •Σ, for any statement B
– if s ∼ σ and S ∼ Σ then s • S ∼ σ •Σ

We define 〈s, S〉 ∼ 〈σ,Σ〉 by s ∼ σ and S ∼ Σ.

In order to prove equivalence of the concrete and abstract semantics, we intro-
duce the freeze variables also as auxiliary variables into the concrete semantics.
We do so by implicitly assuming that the rule for procedure calls additionally
initializes each freeze variable to the value of its corresponding global variable.
Note that this does not affect the behaviour of the program (which is assumed
not to contain freeze variables). It therefore suffices to relate this concrete se-
mantics extended with freeze variables and the abstract semantics.

Theorem 1. The above relation 〈s, S〉 ∼ 〈σ,Σ〉 is a bisimulation relation for
reachable configurations 〈s, S〉 for which there exists an initial configuration
〈s0, p0〉 such that 〈s0, p0〉 −→∗ 〈s, S〉.

Proof. Let 〈s, S〉 ∼ 〈σ,Σ〉, where 〈s, S〉 is a reachable configuration. We must
show that for every execution step applicable to one configuration, there is an
execution step for the other configuration such that the resulting configurations
are again related by ∼.

If the top of the stack is any statement except S +S, it uniquely determines
the next step for both models. We choose the same step for both models for
the case S + S, so we can consider the resulting configurations of applying an
execution step to both configurations. If the execution steps have preconditions
(rules 2, 4, 5) then satisfaction of these preconditions must be equivalent in s
and σ. It is easy to see this follows from the definition of the relation ∼ on states.
Now we can establish execution steps 〈s, S〉 −→ 〈s′, S′〉 and 〈σ,Σ〉 −→ 〈σ′, Σ′〉.
It rests to prove that the resulting configurations are again equivalent –

〈s′, S′〉 ∼ 〈σ′, Σ′〉

must hold.
We prove the equivalence by considering all semantic rules. We consider the

main rules for object creation, procedure calls and returns.
Rule 3 (z := new). For variables x and y distinct from z, we have s′(x) = s(x),

σ′(y) = σ(y), s′(x) 6= s′(z) and σ′(x) 6= σ′(z). This proves s′ ∼ σ′. Next observe
that S′ and Σ′ equals S and Σ, respectively. So we obtain the desired result.

Rule 7 (call p). By definition we have s′(l) = ⊥ and σ′(l) = 0, for every local
variable l, and s(g) = s′(g) and σ(g) = σ′(g), for every global variable g. It

A Pushdown System Representation for Unbounded Object Creation 13

follows that s ∼ σ implies s′ ∼ σ′. Further, by definition S′ and Σ′ equals s • S
and σ •Σ, respectively. By assumption, s ∼ σ and S ∼ Σ, and so by definition
s • S ∼ σ •Σ.

Rule 8. By definition S and Σ equals s′′ • S′ and σ′′ • Σ′, respectively, for
some states s′′ and σ′′. From the assumption S ∼ Σ it thus follows that s′′ ∼ σ′′
and S′ ∼ Σ′. Remains to prove that s′ ∼ σ′. We distinguish the following three
cases:

1. x and y are both global variables:

s′(x) = s′(y)
(Corollary 1.1)⇐⇒ s(x) = s(y)
(Assumption)⇐⇒ σ(x) = σ(y)
(Corollary 2.1)⇐⇒ σ′(x) = σ′(y)

2. x and y are both local variables:

s′(x) = s′(y)
(Corollary 1.2)⇐⇒ s′′(x) = s′′(y)
(Assumption)⇐⇒ σ′′(x) = σ′′(y)
(Corollary 2.2)⇐⇒ σ′(x) = σ′(y)

3. x is global and y is local:

s′(x) = s′(y)
(Corollary 1.3)⇐⇒ s(x) = s′′(y)

(Lemma 1)⇐⇒ s(x) = s′′(g) and s′′(g) = s′′(y), for some global variable g
(Freeze var.)⇐⇒ s(x) = s(g′) and s′′(g) = s′′(y), for some global variable g
(Assumption)⇐⇒ σ(x) = σ(g′) and σ′′(g) = σ′′(y) for some global variable g
(Corollary 2.3)⇐⇒ σ′(x) = σ′(y)

Note that because of the introduction of freeze variables in the concrete se-
mantics we indeed have s′′(g) = s(g′) (this can be proved in a straightforward
manner by induction on the length of the computation).

This concludes the proof of Theorem 1. ut

6 Conclusions

Pushdown systems naturally model the control flow of sequential computation
in programming languages with local variables and recursive procedures. In this
paper we provided a generalization of this model by adding unbounded object
creation. We have shown that imperative programs with object creation, re-
cursive procedures, and local variables without any restriction can be given a
symbolic semantics through a finite pushdown system such that the infinite state
system generated is strongly bisimilar to the ordinary operational semantics of
the program.

14 Jurriaan Rot, Frank de Boer, Marcello Bonsangue

Applications to static analysis. Starting from an initial stack containing the
initial procedure p0, a program P is executed and eventually terminates when
the stack is empty. If we consider a singleton alphabet symbol labeling all tran-
sitions of our pushdown system, we obtain an ordinary pushdown automaton
(with acceptance by empty stack). Clearly, the language accepted by this push-
down automaton is non-empty if and only if there exists an execution of the
program P that terminates. Since the emptiness problem is decidable for push-
down automata [16], we have an algorithm for deciding termination of programs
in our language. Similarly, because the halting problem for pushdown automata
is decidable, we have an algorithm for deciding if a program blocks, for example
because of an assignment with an undefined variable at the right-hand side.

Applications to model checking. More recently, the problem of checking ω-regular
properties (like those expressible in linear-time temporal logics or linear-time
µ-calculus) or properties expressed as formulas of the alternation-free modal
µ-calculus (including CTL properties) of pushdown systems have been shown
to be decidable, leading to efficient model checkers for the generated infinite
state systems (see e.g. [5,12]). For instance, to verify whether a program P
in our language satisfies a linear time temporal formula φ, we first derive a
symbolic pushdown system for P with finitely many control states and stack
symbols, then construct the finite state Büchi automaton for the negation of
φ, and finally use the algorithm of [5] to check if there is no execution of the
program P that satisfies the negation of φ. Interestingly, the complexity of this
model checking problem for a fixed LTL formula is polynomial in the size of
the pushdown system, a complexity that is not much worse than that for finite
transition systems [5].

In the future we plan to investigate the integration of our technique with
jMoped, a Java model checker based on pushdown systems [12]. As for the model
checking, there are at least two directions that could be explored. On the one
hand we intend to look for extension of temporal logic with support for a prim-
itive for object creation (and destruction) [11,3]. On the other hand, we would
like to investigate model checking of some non ω-regular properties, allowing,
for example, matching of procedure calls and returns. While the problem is in
general undecidable, it seems possible to turn our pushdown systems into visi-
bly pushdown automata, a class of pushdown automata with desirable closure
properties and interesting tractable decision problems [1].

Language considerations. We have presented a language that supports unbounded
object creation by using recursive procedures with global and local variables. The
language can not be extended with higher-order features like passing procedures
and internal procedures as parameters of procedure calls, as well as it cannot
include features like call-by-name parameter passing because the halting prob-
lem for these two class of programs is known to be undecidable [7]. It would be
interesting, however, to see what happens if we change static scope to dynamic
scope or if we disallow internal procedures as parameters.

A Pushdown System Representation for Unbounded Object Creation 15

Our language does not have any concrete data but for object identities, and
does not support object fields. Data can be added but in order to model com-
putations by a finite pushdown system, we need to consider only finite data
domains. The language can be extended with object fields f1, . . . , fn, by sim-
ply adding expressions of the form x.f as variables, and as such they will be
included in the partitions. More general navigation expressions can be reduced
to the above in the obvious way.

The language does not have a syntactic construct to destroy object identi-
ties. We can give a concrete semantic for it without the needs of inspecting the
call-stack (for example by storing in extra variables the names of the objects
destroyed and assuming they will not be reused, so that local variables in the
stack can be reset when a procedure returns). This observation can be combined
with the concept of chains in the stack of variables referring to the same object
to allow deletion within the pushdown system representation, by simply keeping
track of the chains which refer to deleted objects. This way of deletion would
work also for encoded object fields, which implies on-the-fly garbage collection.
We plan to work out the details in a future work.

Finally, our language is sequential. It is not a problem to add bounded con-
currency within the body of a procedure by using, e.g. a parallel operator of the
form B1||B2, as we can give an interleaving semantic to it using rules of the form

〈s,B1 • S〉 −→ 〈s,B • S〉
〈s,B1||B2 • S〉 −→ 〈s,B||B2 • S〉

and
〈s,B2 • S〉 −→ 〈s,B • S〉

〈s,B1||B2 • S〉 −→ 〈s,B1||B • S〉

However for more global notions of concurrency, like threads, we need to store
the local variables of the program for each thread. Therefore, to keep the stack
alphabet and the number of control states finite in our pushdown system, we have
to restrict to a bounded number of threads [2]. It can be interesting to combine
our results with those of [6], so to allow reachability analysis of multithreaded
programs.

We leave these considerations for future work.

References

1. R. Alur, P. Madhusudan. Visibly pushdown languages. In Proc. of Annual ACM
Symposium on Theory of Computing (STOC 2004), pages 202-211, ACM, 2004.

2. F.S. de Boer and I. Grabe. Automated Deadlock Detection in Synchronized Reen-
trant Multithreaded Call-Graphs. In Proc. of 36th Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM 2010), volume 5901 of Lecture
Notes in Computer Science, pages 200-211, Springer, 2010.

3. M.M. Bonsangue, A.Kurz. Pi-Calculus in Logical Form, In Proc 22nd Annual IEEE
Symposium on Logic in Computer Science (LICS 2007), pp. 303-312, IEEE, 2007.

4. C. Baier and J.-P. Katoen. Principles of Model Checking The MIT press, 2008.

5. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking In Proceedings Concur 97, volume 1243 of
Lecture Notes in Computer Science, pp. 135–150, Springer, 1997.

16 Jurriaan Rot, Frank de Boer, Marcello Bonsangue

6. A. Bouajjani, S. Fratani, S. Qadeer. Context-Bounded Analysis of Multithreaded
Programs with Dynamic Linked Structures. In Proc. Intern. Conf. on Computer
Aided Verification (CAV’07 volume 4590 of Lecture Notes in Computer Science,
Springer 2007.

7. E.M. Clarke. Programming language constructs for which it is impossible to obtain
good Hoare-like axioms. Journal of the ACM 26:126-147, 1979.

8. J. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pǎsăreanu, Robby, and
H. Zheng. Bandera: Extracting finite-state models from Java source code. In Pro-
ceedings 22nd International Conference on Software Engineering, pp. 439-448. IEEE
Computer Society, 2000.

9. C. Demartini, R. Iosif, and R. Sisto. A deadlock detection tool for concurrent Java
programs. Software - Practice and Experience, 29(7):577–603, 1999.

10. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall Series in Automatic
Computation, 1976.

11. D. Distefano, J.-P. Katoen, A. Rensink. Who is Pointing When to Whom? In
Proceedings of 24th Int. Conf. on Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS 2004) volume 3328 of Lecture Notes in Computer
Science, pp. 250-262, Springer 2004.

12. J. Esparza and S. Schwoon. A BDD-based model checker for recursive programs.
In Proceedings of CAV 2001, volume 2102 of Lecture Notes in Computer Science, pp.
324–336, Springer, 2001.

13. M. Gabbay and A. Pitts. A new approach to abstract syntax involving binders. In
Proceedings of 14th LICS, pp. 214-224, IEEE Computer Society Press, 1999.

14. K. Havelund and T. Pressburger. Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer,
2(4):366-381, 2000.

15. G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279–94, 1997.

16. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 3rd edition, 2006.

17. U. Montanari and M. Pistore. An Introduction to History Dependent Automata.
In Proceeding 2nd Workshop on Higher-Order Operational Techniques in Semantics,
volume 10 of Electonic Notes in Theoretical Computer Science, pp. 170-188, Elsevier,
1998.

18. D. Park, U. Stern, J. Skakkebaek, and D. Dill. Java Model Checking In Proceedings
of the 15th IEEE International Conference on Automated Software Engineering. pp.
253–256. IEEE, 2000.

19. B. Randell and L.J. Russell. ALGOL 60 Implementation: The Translation and Use
of ALGOL 60 Programs on a Computer. Academic Press, 1964.

20. D. Sangiorgi. On the bisimulation proof method. Mathematical Structures in
Computer Science 8(5):447-479, 1998.

21. S. Schwoon. Model-checking pushdown systems. PhD thesis, Technische Univer-
sität München, 2002.

22. R. Sebesta. Concepts of Programming Languages. Addison-Wesley, 9th edition,
2009.

23. B. Stroustrup The C++ Programming Language.

