
Bachelor Thesis
LIACS, University of Leiden

The Anatomy of a Collaborative
Image Search System

Author:
Menno Luiten (s0345296)

Supervisor:
dr. Mark Huiskes

Abstract

“An image tells more than a thousand words”. Yet, while text
searching on the Internet has become indispensable, with fast and scal-
able techniques, searching for images has not. The purpose of this pa-
per is to design an infrastructure for an Internet-based Collaborative
Image Search System (hereafter also called CISS), using existing Infor-
mation Retrieval techniques and adjusting them to work play nice with
multimedia. For this purpose I will use relevance feedback, distributed
indexing and distributed computing using Hadoop and HBase.

1 Introduction

Image analysis and other techniques for describing multimedia are becoming
more advanced and accurate, while more techniques for information retrieval
systems are getting more accessible. While many multimedia information
systems are based on KD-trees[1], I will try to combine several branches of
research in a relatively efficient way in designing a new search engine based
on Aspect-based Relevance Learning[2] (hereafter called ARL), using tech-
niques also commonly used by free text information systems. Also we would
like to create collaboration among users of this search engine by using collab-
orative filtering techniques, thereby creating a Collaborative Image Search
System (ciss). The techniques will be implemented in a system named
cissle1. We assign aspects to the images using several types of analysis.
This has several implications: the image analysis has to run fast, reliable
and accurate to keep up with the immense amount of data on the web, while
the search system itself should hold large amounts of data that is not purely
based on text.

Because this is (only) a Bachelor Thesis, it would be unrealistic to aim
for a fully functional search system with all features implemented. So many
of the actual features will be discussed but not implemented. In this report

1http://www.cissle.com

1



I will first introduce some general background and anatomy of search en-
gines. I will then introduce the techniques used with cissle, and specify
the specific design choices made during the development of cissle. I will
mostly describe the the most important aspects of this project: relevance
feedback and distributed computing using MapReduce. Then some results
of cissle will be discussed and I will conclude.

2 Anatomy

The anatomy of cissle will have much in common with any other document-
based search system. In this section I will explain the general structure of
such a search system and explain in what ways my proposed search system
is different and why. Later, in Section 4 I will specify how I implemented
these techniques in cissle. I will especially use techniques that provide
massive data storage and provide a simple way to scale horizontally. That
is; adding servers rather than upgrading servers. The reason is that the
costs of scaling horizontally are linear, while the costs of scaling vertically
are often exponential. For example, if we need to double the performance
of a 10 server cluster, adding 10 servers will cost exactly the same as the
initial investment. Upgrading the existing servers to double the performance
will however mean that all processors, memory, networking equipment etc
must be upgraded. At first this might be affordable, but there’s a limit; the
current technological advancements. If all servers are equipped with 4Ghz
quad core processors, the costs of doubling processors to 8GHz quad cores
or 4GHz hexacores is very expensive or even not possible. Many search
systems therefore use parallel techniques that are optimized to scale well
horizontally. I will expand on that subject in Section 3. First, I will quickly
introduce the general subsystems of our search system.

2.1 Crawler

A crawler provides the search system with the data that needs to be indexed.
In our case this crawler should search the Internet for images and store it to-
gether with some metadata (e.g., some sort of PageRank[3]) and some useful
context-based information (such as user-created annotations and copyright
information). The crawler stores this information in what is often called a
repository.

2.2 Analysis

The analysis is a bit more complicated than the use ‘scan the document for
keywords’ that text search engines can afford. Each image in the repository
has to be analyzed by some algorithm(s) which output aspects of the pro-
vided image. I shall call this annotating the images. I will try to implement

2



this in a way that algorithms can be added and modified, since this is a
research field that is still heavy in development. As long as the aspects lead
to useful results and can be represented textually, it does not matter what
the aspect represents. We store the list of aspects per image as a vector,
which we will call the image index.

2.3 Indexing

Indices in Information Retrieval are basically data structures to rapidly iden-
tify documents by their contents. In search system the most common index
is the inverted index. The general idea of this index is to list per aspect, the
documents or images that match said aspect. So after analyzing the image,
we have an image index linking each image to one or more aspects. For the
inverted index, we invert this data by listing for each aspect, the images
that contain that aspect. We call the list of images for an aspect, a posting
list.

2.4 Queries

While the previous subsystems are invisible for the end-user, this changes
when we come to queries. Queries are the way the user interacts with the
search system. The most successful search engines (Yahoo!, Google, Bing)
have only one query field, which searches one or multiple indices for matches.
I will replicate this simple interface, and let the query search for matching
aspects. A notable challenge is to provide enough annotations that these
initial searches provide plenty results. However, in cissle, the query field
is not the main feature. We will use a drag&drop example set to refine
image results using relevance feedback (RF). This causes the queries to be
more complicated, but the magic trait of search engines is that the seemingly
simple queries have enormous parallelism and can therefore be executed very
fast. So our queries will invoke additional sub-queries depending on the
example set, hopefully without suffering too much in terms of performance.

2.5 Relevance Feedback

Relevance feedback is a method of letting a user define whether or not a
match is relevant, given a query result set. In the type of explicit relevance
feedback we will use, the user can select images matching certain aspects
(such as color, subject, etc) into an example set. With the data from the
example set, the query can be refined (e.g., by adding the top 10 terms from
each selected match to the search query), thus finding images matching
aspects from the original query ánd the example set.

3



2.6 Collaborative Filtering

Collaborative filtering is a process that filters datasets based on patterns
executed by multiple agents, in our case multiple queries. Certain patterns
in the dataset might indicate that the weight of some term on a certain
image should be higher or lower than their current weight. We perform this
filtering based on data collected from the relevance feedback, as well as click
data. If none of the users searching for ‘car’ are content with some image
X, we might want to adjust the weight of the aspect ‘car’ on that image X
downwards, to make it less relevant for future requests. This is a research
field in itself and many large webshops use similar algorithms to recommend
products to their customers.

3 Distributed Computing

I started my literature research by looking at the major search engine play-
ers, such as Google, Yahoo! and Bing. Unfortunately, since search engines
can be very profitable, much of the inner workings of these search engines
are well-kept secrets. However some general information can be extracted
from several papers and articles. I focused mainly on the book by (Informa-
tion Retrieval) and on early Google papers like (referenties), which should
outline the general structure of a proper search engine.

All major search engines have one thing in common: distributed computing
and indexing. Not only because of the sheer size the dataset, which obvi-
ously is too big to fit on one computer, but also because of the potentially
huge amount of queries on the database. Multimedia Information Retrieval
systems often involve KD-trees as can be read in [1]. I would like to find
out wether the techniques used in ‘regular’ search engines, can be useful on
multimedia datasets.

In the early stages of my research I tried to expand my current knowledge
on relational databases and web-based application development to encom-
pass the field of large-scale databases and low-latency queries. Using this
preliminary research I designed a service infrastructure as depicted in Fig-
ure ??. After some brief experiments using a single MySQL[4] database, it
seemed there was no linear scaling and storage was quite limited. I stum-
bled upon several articles [5, 6] regarding Database Sharding, often using
MySQL and PHP for large-scale PHP sites. In short, sharding is a very
application-dependent technique to distribute tables over multiple database
servers, thereby placing data for a certain user on server1, while placing data
for another user on server2. However, as I was reading the comments on
these articles, I found many authors criticizing that this sharding requires a
lot of manual bookkeeping (e.g., “on which server is data for user2 stored?”

4



and “what is we want to move user2 to server3?”) and is actually just an
(bad) emulation of actual distributed computing solutions such as parallel
databases or MapReduce. I decided to research one of these ‘real’ solutions
for cissle.

So I started my search for a distributed computing and indexing solution
where almost every human being on the planet starts of their Internet search:
at Google R©. Google’s original paper is called ‘The Anatomy of a Large-Scale
Hypertextual Web Search Engine’ [3], and later introduced a concept called
MapReduce[7]. The Google architecture is build around a cluster of com-
modity machines, instead of a heavy-duty supercomputer. These relatively
cheap and often not uniform servers gave an easy solution using massive
parallelism for certain problems. Even later, Google introduced Bigtable[8]:
a distributed, persistent row-value data store, which can also be used as
input and/or output of MapReduce jobs. Because of this, the combination
of MapReduce and Bigtable can be used to handle large amounts of data,
which in turn can be processed in parallel on a cluster of arbitrary size. It
turns out that this can be used particularly effectively in a search system
for the indexing process.

3.1 MapReduce

MapReduce[7] is essentially a two-phase algorithm, of which each part of
each phase is executed in parallel and possibly distributed over multiple
servers. The first phase is called the map phase, executed by a Mapper.
Each Mapper retrieves a subset of the total dataset from the (often very
large) input, and outputs one or multiple <key, value>pairs, which will be
used as input for the reduce phase. The Reducer receives all values pair of
a certain key. In the original paper this is displayed as

map (k1, v1) → list(k2, v2)
reduce (k2, list(v2)) → list(v3)

For example, if we want to count all the words in a (very large) document,
the Mapper will receive a part of the document as input, and output <word,
1> for every word it encounters. The Reducer then retrieves a list of 1’s (one
for every occurrence of the word). It will output <word, sizeof(values)>,
thereby returning the number of times the word occurs in the document.
Because of the high parallelism that can be achieved by both the Mapper
and the Reducer, this algorithm can be executed very efficiently using a
MapReduce cluster.

In figure 1 a more detailed overview of the Map/Reduce algorithm is shown
and pseudocode for the word-counting algorithm is shown in Appendix A.

5



Figure 1: Map/Reduce

DeWitt and Stonebraker[9], pioneers in parallel databases and shared-nothing
architectures, have made comments about MapReduce being a step back-
wards rather then a progression in terms of databases, mainly because of its
lack of relations. They mention parallel databases as a proper alternative.
In my eyes, they miss out on the fact that MapReduce is not (and does not
aim to be) a replacement for relational databases, but rather a paradigm to
provide easy parallism. I found MapReduce flexible enough for all my goals
(as will be elaborated upon in Section 4) and found no proper affordable
parallel databases, let alone open-source ones. Besides, if Google can afford
to use it, I certainly can.

3.2 Hadoop

Hadoop is an open-source implementation of the MapReduce[7] paradigm
and has gathered an active user base and many related projects. Major users
include major search engine players like Yahoo![10], Facebook, Rackspace[11]
and Microsoft (who acquired the company that designed Hadoop: Powerset)[12].
With Hadoop, it is relatively easy to configure a cluster with a distributed
filesystem (HDFS) and coordination for MapReduce jobs. While Hadoop it-
self is a MapReduce environment, many contributed projects have expanded
its application domain:

• Zookeeper[13] is a distributed lock manager with automatic fail-over
abilities. It somewhat resembles Google’s Chubby[14].

6



• HBase[15] is a persistent, distributed row store build based on Google’s
Bigtable. Recent version of HBase use Zookeeper for load-balancing
and fail-over.

• Mahout[16] can execute machine learning libraries on a Hadoop clus-
ter.

• Pig[17] is a high-level language for programming a MapReduce cluster,
similar to Sawzall used by Google.

A combination of these projects can provide us with a flexible tool set for our
project. While analyzing images is not necessarily a strong point of Hadoop,
it can make sense to use Hadoop for this purpose, since it will provide major
advantages in terms of indexing and collaborative filtering in a later stage.

3.3 HBase

Our main focus with the related Hadoop projects will be on HBase. HBase is
a distributed, column-oriented data store modeled after Google’s Bigtable[8].
In the Bigtable paper, Chang et al. explain they use this data store for large
data sets such as Google Maps, ... and even parts of their search engine.
HBase is designed to deal with Hadoop’s inability to efficiently work with
small files and/or data. But mainly because of the parallelism and database-
like structure, I decided to use it to store all my indexes and repositories.

The basic architecture of HBase consists of one Zookeeper node, one master
node, and one or multiple region servers. One server can run multiple nodes
(e.g., one server can run both the master and a region server, although this
would not be very safe). The Zookeeper node takes care of master node
fail-over, the master node coordinates all actions of and between the region
servers, while the region servers actually contain data and serve requests.
The master knows where all the parts (or ‘splits’) of the tables are, but after
requesting the location of a split of the table, the client can communicate di-
rectly with the region server. These parallel properties make it very scalable
and fast.

3.4 Mahout

Another interesting project is Apache Mahout. While the project isn’t far
in development, Taste[16] can be very useful for our collaborative filtering.

4 CISSLE

In this section I will elaborate on what my specific ideas for cissle are, and
how I have implemented (parts of) it.

7



4.1 Main focus

After researching the possibilities and figuring out common techniques in
Information Retrieval, I tried to focus my efforts on very general parts of
the search engine for this project. Since time was rather limited, I could
not afford to write a complete version of cissle from the ground up. My
intended end-goal was to have a functional search engine interface using
drag and drop relevance feedback, and executing queries using ARL
on HBase indexes on a Hadoop cluster. Ideas for other aspects of the
search system have sprung to mind and will be discussed in this section, but
I will elaborate mostly on the subsystems that I have implemented.

Figure 2: Basic server architecture of cissle

4.2 Data set

The first concession made, was scrapping the crawler. Writing our own
crawler or writing a plug-in should not be an immense task, but Mark is
one of the maintainers of the MIRFLICKR25000 data set[18] and Aspect

8



Explorer. The MIRFLICKR collection consists of 25,000 images gathered
from Flickr[19], including licenses and tags. Aspect Explorer is a program
that demonstrates ARL[2] and also calculates aspects on the image set.
This is a very feasible test-set for my online search system. Ideally, the
results from cissle and Aspect Explorer should be identical. I used aspect
calculations made by Aspect Explorer and transformed these into a HBase
index, instead of letting crawlers collect data from the Internet and analyzing
them myself. This should, however, not be a large task to complete. In
future work I would like to write a plug-in and output writer for the Heritrix
or Nutch crawler, that collects images with metadata and writes output in a
HBase compatible format. These two crawler projects provide a good part
of the crawling process, also taking care of proper connection management,
robots.txt in- and exclusions, duplicate visits, depth limits, etc.

4.3 A short word on ARL

ARL, or Aspect-based Relevance Learning, is a technique to test which as-
pects in a query are relevant to a user, given some user relevance feedback
and information about the collection. In our case this technique enables us
to see which aspects are important based on the images in the example set,
and also rank the images resulting from the aspect relevance, resulting in an
ordered result set. For more information on ARL I recommend reading [2].
The original ARL as described is implemented by using a bit matrix (im-
ages as rows, aspects as columns), in which 0 means ‘image does not contain
aspect’ and 1 means ‘image does contain aspect’. To facilitate collaborative
filtering (and thereby gradually decrease the importance of certain aspect
on a certain image), I replaced the bits by a floating point value.

4.4 Indexing

With a HBase index populated with aspects on the MIRFLICKR collection,
the next step is the indexing of the aspects, thereby creating an inverted
index. For this purpose I wrote a Hadoop MapReduce program featur-
ing weighting and pdb calculation. The map-phase of the program has an
input of imageID:aspectID:weight, and outputs aspectID:imageID:weight.
The reduce phase, receiving all imageID’s per aspectID, outputs aspectID:
list<imageID:weights> into a HBase table. Also it calculates the pdb for ev-
ery aspect, by dividing the size of the list of imageID’s by 25,000 (the size
of the collection).

We can use the weight given to the aspects by the indexing to divide this
index into multiple tiers. This will potentially decrease the size of the post-
ing lists and thereby the result set that needs to be sent over the network,
intersected and sorted. Weights can be changed through the collaborative

9



filtering techniques, and therefore images can travel from one tier to another.
Let’s take, for example, 4 tiers:

1. Weight 1.0 through 0.9 − Top Tier / Champion list

2. Weight 0.9 through 0.75

3. Weight 0.75 to 0.5

4. Weight lower than 0.5 − Bottom Tier

When searching for 1 feature, this will always return the best results in
the top tier. Also, this small top-list can be kept in-memory for optimal
performance, since it will contain very often accessed data. However, when
searching for multiple terms, it might be possible that the intersection of
multiple posting lists returns very few results (e.g., if all images matching
‘cat’ and ‘dog’ result in very high p-values). In this case we need to re-
trieve the results from lower tier(s), which may or may not be in cache.
Digging through lower tiers keeps getting more expensive and less likely to
be contained in cache. So it makes sense to limit the depth of the search.

4.5 Web interface

For the first part of the engine I focused my attention on javascript libraries
capable of doing drag and drop. I had some experience using Dojo[20],
and I found a very useful tutorial on drag and drop[21]. I adjusted it to
feature only a example set container. I also adjusted the search button to
append the file names/ID’s of the images in the example set container. The
request is sent through AJAX to a php script that propagates the request to
a Search Server. When all results are gathered from HBase, the request is
returned and an ordered/ranked list of images is sent to the browser. These
are presentes in a matrix-like table and the user is allowed to use these in
the drag and drop container to use the image relevance feedback feature.

4.6 Search server

The search server communicates between the web interface and the indexes
stored in HBase, and is responsible for sorting and relevance ranking. To-
gether with research and setting up the Hadoop and HBase cluster, this is
what I spent most of my development time on. I started out with a sim-
ple version that looked up rows on a specified table and let the PHP script
determine the ranking. Later versions were programmed in Java and each
request from the webserver is handled by a Worker Thread, which in turn
divides query terms into ”buckets”. Each bucket contains terms that should

10



Figure 3: Preview of cissle interface

be located on one region server. Then, each bucket is given it’s own thread,
and executes a search on the region server. The buckets then return asyn-
chronously and results are intersected. This setup allows multiple clients
to connect without much latency. Also, because each client has multiple
simultaneous requests to the region servers, they are gathered faster than a
single query. Thus increasing the number of region servers should improve
the query times and decrease the load per region server.

When this version proved that acceptable lookup results could be achieved,
I started developing a version that could handle Aspect Relevance Learning
(ARL). The current version has three distinct phases that require HBase
requests. First, it looks up aspects of the images in the query string and
example set, then looks up pdb-values of those aspects and calculates the
ARL ranking and selects relevant aspects. Thirdly, for all relevant aspects
it retrieves the posting lists and combines them with some ranking (using
p-values) into a final result set. The p-values are calculated with

p(N) =
n∑

i=N

(
n

i

)
pi

db(1− pdb)(n−i), (1)

where n is the current total number of positive examples, and N the number
of positive examples that possess an aspect. The p-value cutoff is defined

11



by the function
pmin = 1/(10 + N5). (2)

5 Experiments

As a testing environment I first set up a Amazon EC2 cluster running
Hadoop 0.19.0 and HBase 0.19.0. EC2 was a logical choise because of its
per-instance-hour billing, allowing changes in cluster size without heavy in-
vestments. Also, EC2 scripts for HBase 0.19 were already written. However,
during development, HBase 0.20 (for more information see Section 5.1) was
starting to make an appearance and the performance figures looked very
promising. So I decided to rewrite the EC2-scripts and started using Hadoop
0.20.0 and HBase 0.20.0-alpha instead.

If an experiment does not note the number of nodes used, it will usually
be run on 1 master and 3 slaves. I used ‘Large’ EC2 instances for all servers
(7.5GB RAM, 4EC2 Compute Units). If a memcached cluster is used in an
experiment, it will be run on separate EC2 nodes of the ‘Small’ instance
class, the cluster size will be 3 nodes.

I conducted my experiments on the MIRFLICKR-25000 image collection[18].
This collection is well documented and annotated, and is used in other image
analysis project such as ImageCLEF 2009. This gives us the opportunity to
compare our results to other experiments. It is however, seen from a web-
scale perspective, very small. Therefore I will experiment with a very small
cluster and expanding a bit, assuming that scaling the cluster will cope with
scaling the image collection (the birth-right of any cluster solution).

5.1 HBase 0.20

The main goal for HBase 0.20 was simply to improve performance and reli-
ability. A random row lookup in 0.19 could take well over 20 milliseconds,
while the new 0.20 release reduces this to about 1-2 milliseconds. Mostly
because of a complete overhaul of the data storage subsystem, which now
also includes a result cache. Although the original design had a dedicated
memcache cluster for caching, the HBase’s internal result cache was deemed
sufficient for this stage of the project. The direct result of the 0.20 release
to my implementation was extremely positive. In early experiments with a
color-only aspect index, a 3-node (+ 1 master node, also acting as Search
Server) cluster, resulted in a ‘term lookup’ response time of less than 50
milliseconds when serving out of the HBase cache, and a response time of
less than 120 milliseconds for any uncached query. HBase 0.19 did the same

12



queries in over half a second.

Cluster Size Webservers Concurrency level Request time2 Query time3 Requests/sec.

3 1 1 168 50 5.93
3 1 5 297 80 16.80
3 1 25 851 220 29.37
3 1 40 1171 380 34.15

Tests performed from EC2

5 2 1 62 30 16.10
5 2 5 134 60 37.80
5 2 25 393 220 63.48
5 2 40 608 270 65.79

Table 1: Performance of cluster on HBase 0.20

Using 2 webservers, the load of the Search Server program reaches 100%
and thus should be about the limit for these specifications. The load on the
region servers and the master however was minimal. So adding more Search
Servers and webservers (using the proper ratio) should scale well. Also,
there is a significant overhead on the webserver, sometimes even tripling the
response time between the query and the client. This proves that a lot of
improvement can be made by avoiding the expensive MVC stack of Zend
Framework and using a lightweight client instead.

Hardware configuration of both Search Server and Webserver should be
much bulkier in a production environment, like a 2x Quad Core with 16GB
as Search Server, and 1x Quad-Core or 2x Dual-Core as webservers, thereby
probably increasing Requests/second to well over 300 per second using the
same number of servers.

6 Conclusion and Future Work

Because of the scale of this project, there are many opportunities left for
future projects. To name a few, the indexing technique is still limited and
unoptimized and incapable of dealing with a dynamic data set. This can be
overcome by chaining several MapReduce jobs, e.g. an item count (for pdb-
calculations), indexing job, collaborative filtering job, etc, instead of running
just the indexing MapReduce jobs.

2Average time for full (remote) HTTP request in milliseconds, 20 seconds long
3Average query time at Search Server, over the same 3 runs

13



Also, the indexes themselves need work; there is no hierarchy in the in-
dex yet, making a serious impact on performance because the posting lists
are far too large to efficiently query the engine. Another problem in that
area would be to adjust ARL to handle a multi-layered index.

Other obvious improvements are those mentioned in the report itself: a
crawler, relevance feedback system, funding for a permanent cluster loca-
tion, etc. I hope to implement these features in other projects in the course
for my Masters degree.

On a personal note, the project also taught me an interesting approach
to databases and information retrieval and introduced me to the world of
‘schema-free, distributed, nosql’-databases. Finally, HBase inspired me to
look at (and hopefully work with) databases like CouchDB and Katta for
future projects.

14



References

[1] Michael Lew. Content-based multimedia information retrieval: State of
the art and challenges. ACM Transactions on Multimedia Computing,
Communications, and Applications, pages 1–19, 2006.

[2] M.J. Huiskes. Image searching and browsing by active aspect-based
relevance learning. CIVR 2006, pages 211–220, 2006.

[3] Sergey Brin and Lawrence Page. The anatomy of a large-scale hyper-
textual web search engine. Computer Networks and ISDN Systems,
1998.

[4] MySQL. http://www.mysql.com.

[5] Database Sharding at Netlog, with MySQL and PHP.
http://www.jurriaanpersyn.com/archives/2009/02/12/
database-sharding-at-netlog-with-mysql-and-php/.

[6] Database sharding blog. http://www.codefutures.com/weblog/
database-sharding.

[7] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data pro-
cessing on large clusters. OSDI, 2004.

[8] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-
rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: A distributed storage system for struc-
tured data. OSDI, 2006.

[9] David DeWitt and Michael Stonebraker. Mapreduce: A ma-
jor step backwards. http://databasecolumn.vertica.com/database-
innovation/mapreduce-a-major-step-backwards/.

[10] Hadoop at Yahoo! http://developer.yahoo.net/blogs/hadoop.

[11] Hadoop at Rackspace. http://blog.racklabs.com/?p=66.

[12] Powerset, leveraging open source hadoop, pow-
ers microsoft’s bing. http://ostatic.com/blog/
powerset-leveraging-open-source-hadoop-powers-microsofts-bing.

[13] Apache Zookeeper. http://hadoop.apache.org/zookeeper.

[14] Mike Burrows. The Chubby Lock Service for Loosely-Coupled Dis-
tributed Systems. OSDI’06, 2006.

[15] Apache HBase. http://hadoop.apache.org/hbase.

15

http://www.mysql.com
http://www.jurriaanpersyn.com/archives/2009/02/12/database-sharding-at-netlog-with-mysql-and-php/
http://www.jurriaanpersyn.com/archives/2009/02/12/database-sharding-at-netlog-with-mysql-and-php/
http://www.codefutures.com/weblog/database-sharding
http://www.codefutures.com/weblog/database-sharding
http://developer.yahoo.net/blogs/hadoop
http://blog.racklabs.com/?p=66
http://ostatic.com/blog/powerset-leveraging-open-source-hadoop-powers-microsofts-bing
http://ostatic.com/blog/powerset-leveraging-open-source-hadoop-powers-microsofts-bing
http://hadoop.apache.org/zookeeper
http://hadoop.apache.org/hbase


[16] Apache Mahout - Taste. http://lucene.apache.org/mahout/taste.
html, 2008.

[17] Apache Pig. http://hadoop.apache.org/pig.

[18] M.J. Huiskes and M.S. Lew. The MIR Flickr retrieval evaluation. ACM
International Conference on Multimedia Information Retrieval, 2008.

[19] Flickr. http://www.flickr.com.

[20] Dojo toolkit. http://www.dojotoolkit.org.

[21] Dojo drag and drop, part 1. http://www.sitepen.com/blog/2008/
06/10/dojo-drag-and-drop-1.

Appendices

A MapReduce pseudo-code

map(key, line,
OutputCollector<Text, IntWritable> output) {

String line = new SplitLineToWords(line);
while (line.hasMoreWords()) {

output.collect(line.nextWord, 1);
}

}

reduce(key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output) {
// sum all values for this key
long sum = 0;
while (values.hasNext()) {

sum += values.next().get();
}

// output sum
output.collect(key, new IntWritable(sum));

}

16

http://lucene.apache.org/mahout/taste.html
http://lucene.apache.org/mahout/taste.html
http://hadoop.apache.org/pig
http://www.flickr.com
http://www.dojotoolkit.org
http://www.sitepen.com/blog/2008/06/10/dojo-drag-and-drop-1
http://www.sitepen.com/blog/2008/06/10/dojo-drag-and-drop-1

	Introduction
	Anatomy
	Crawler
	Analysis
	Indexing
	Queries
	Relevance Feedback
	Collaborative Filtering

	Distributed Computing
	MapReduce
	Hadoop
	HBase
	Mahout

	CISSLE
	Main focus
	Data set
	A short word on ARL
	Indexing
	Web interface
	Search server

	Experiments
	HBase 0.20

	Conclusion and Future Work
	MapReduce pseudo-code

