
Aspect-Oriented Programming in PHP

M.F.A. Pouw
Liacs

University of Leiden
E-mail: mpouw@liacs.nl

Abstract

Aspect Oriented Programming is a new widely used programming
paradigm. This paradigm enables the capability to efficiently imple-
menting crosscutting concerns in new and also existing programs with-
out changing the original code. Unfortunately this is only possible in
compiled programming languages. Scripting languages for example
don’t have the possibility to weave advices into these concerns before
compilation. To enable this paradigm in the scripting language PHP
a new approach is taken by weaving these advices into the concerns
in runtime. This results in a fast and easy to use solution for Aspect
Oriented Programming in PHP.

1 Introduction

After Sequential Programming and Object-Oriented programming a new pro-
gramming paradigm hype arose between existing software programming
views; Aspect-Oriented Programming. As Sequential and Object-Oriented
programming languages can be both compiled and interpreted, current im-
plementations of Aspect-Oriented programming are based on Weaving be-
fore compilation and thus cannot be applied on interpreted languages. Be-
cause Aspect-Oriented Programming offers great advantages with respect to
Cross-Cutting concerns, the need for a good solution for Aspect-Oriented
Programming in interpreted languages is very welcome.

2 Background

There are thousands of programming languages and new languages are de-
veloped every year [6]. In order to distinct all these languages they can

1

be grouped by several properties. These properties can be Model of exe-
cution like Compilation, Interpretation and Just-in-time Compilation or a
programming languages can have distinct Programming Paradigms. The dif-
ferences between Java and PHP are clear after discussing these properties,
but because the research is focused on Java and PHP, these languages are
also shortly mentioned.

2.1 Execution models

A computer can only execute the machine language that is written with a set
of macro instruction, these macro instructions are actually implemented with
lower-level microinstructions. Because no modern programming languages is
written in this machine language, top-level languages first must be translated
to theses lower-level instruction. This cannot be done in a single layer, but
this requires an operating system with higher-level primitives than those
of the machine languages [3]. The implementation of this translation and
therefore the execution of the programming code can be done with several
models.

2.1.1 Compiled languages

The first and most used model is used by Compiled languages, the program-
ming code is directly translated into the machine language. This translating
/ compiling is done by a compiler in several steps; first the programming
code is analyzed by the Lexical analyzer to retrieve only the useful lexical
units like identifiers, operators and other special characters from the pro-
gramming code. Then the Syntax analyzer constructs a parse tree from
these lexical units to represent the syntactic structure of the program. Be-
fore translating the code into machine language the program is translated
into an intermediate code to detect errors and to optimize the program.
Finally the code generator translates this intermediate code into the ma-
chine language. All the needed information about the program variables
and constants during the compilation are stored in the symbol table. Before
the machine language can be executed on the hardware it mostly also re-
quires programs from the operating system, the process of collecting these
programs and linking them together is done by a program called a linker.
The great advantage of compilation is that the resulting program can be
executed very fast.

2

2.1.2 Interpreted languages

A totally different model is used by Interpreted languages. In this model the
programming code is not translated but interpreted by another program.
This interpreter simulates the execution with a set of high-level program
instructions like a virtual machine for the interpreted language. The disad-
vantage of interpretation is that because all the decoding of the higher-level
instruction and the availability of the symbol table during interpretation the
execution time is much higher than compiled programs and more memory is
required. A great advantage is that error messages can refer to source-level
units instead of intermediate code units. So many source-level debugging op-
erations are easily implemented and error messages can indicate the source
line and even the unit where an error occurred.

2.1.3 JIT languages

A compromise between the mentioned two models is used by Just-in-time
languages. These languages are partially compiled like Compiled Languages
via the Lexical analyzer and the Syntax analyzer. After that the interme-
diate code is not translated into machine language, but the intermediate
code is interpreted by an interpreter / virtual machine. The advantage of
this model is that the compilation part can detect errors and optimizes the
programming code. The interpreter simply executes / simulates the inter-
mediate code. Because the intemediate code is defined by an instruction set
on a lower level than interpreted instruction set, JIT Languages are executed
/ simulated faster than Interpreted languages but still slower than Compiled
languages.

2.2 Programming paradigms

Different programming languages use different programming paradigms. These
programming paradigms, like different ways of software engineering, are
grouped in programming methodologies. Examples of paradigms are im-
perative, functional, logical, object oriented and also Aspect Oriented pro-
gramming. Not every programming language is limited to a single paradigm,
most languages support multiple paradigms and most paradigms can be used
in more than one programming language. A programmer can write a the
purely procedural paradigm based program in C++ or write a purely object-
oriented program in Java. Of course a program can also contain elements of
both paradigms.

3

2.2.1 Imperative Programming

This is the oldest programming paradigm and it is closely related to the
machine language of a computer. Different statements are written in a se-
quence to change the state of the program. This looks much like where
in natural languages commands are expressed to take actions. Procedural
programming can be seen as an synonym of Imperative programming be-
cause only procedure calls are added to this paradigm. These procedures
can be routines, subroutines, methods or functions that contain a serie of
statements that are executed.

2.2.2 Object-Oriented Programming

One of the most popular programming paradigms today is Object-Oriented
programming. Writing sequential lines of code is reduced to defining classes.
These classes are compiled into objects that can perform tasks by calling
them via messages. Objects are encapsulations of data and procedures. An
object addresses the data as its attributes and the procedures are called
methods. From a single class, multiple different objects can be created.
Classes can be hierarchically structured. Subclasses automatically inherit
all attributes and methods of their parent class.

2.3 Programming languages

Different programming languages use different execution models. These lan-
guages also support different programming paradigms. Most type of pro-
gramming paradigms work well with all execution models. A widely used
compiled language is Java, this used to be a JIT language, but now only
Java Applets use byte code. This byte code is the partially compiled interme-
diate code that is interpreted by an interpreter / virtual machine. PHP is a
scripting language, or interpreted language. Such languages are fully inter-
preted by an interpreter. Both languagues support strict Object Oriented
programming, but allow imperative programming on a lower level.

2.3.1 Java

Java is originally based on C++ but is designed to be smaller, simpler and
more reliable. When in 1993 the World Wide Web was more widely used,
Java was found to be a useful tool for Web programming. [3] All programs
in Java are Object Oriented. No functions or methods can be called without
encapsulating it in an object or class. Despite Java doesn’t use byte code

4

anymore, it does require a Java Virtual Machine to run onto. Because of
this Java is platform independent, just like PHP.

2.3.2 PHP

PHP (recursive acronym for ”PHP: Hypertext Preprocessor” is a widely-
used Open Source general-purpose scripting language that is especially suited
for Web development and can be embedded into HTML. [8] Because PHP is
a scripting language, the written code isn’t compiled, but interpreted. From
version 5.0 PHP fully supports the Object Oriented Programming paradigm.
In this and earlier versions the Imperative programming paradigm is used.

3 Aspect-Oriented Programming

The Object Oriented programming paradigm tries to reduce duplicate code
and to make maintenance easier. This is done with separation of concerns by
breaking down the program into distinctive parts. These parts have to over-
lap in functionality as little as possible. This is achieved for single concerns,
but unfortunately not for crosscutting concerns. Crosscutting concerns are
aspects of a program that overlap multiple concerns. For example when a
program has several aspects to interact with, like performance, logging and
security.

When each aspect is separately implemented, the resulting code is too
complicated, this is called code tangling. Another problem occurs when
concerns overlap distinctive parts of the program. This Code scattering
results in duplicate code. To solve this the Aspect-Oriented Programming
paradigm is developed. This paradigm can be used in combination with
other paradigms. Thus combined with the profits of object oriented pro-
gramming, it is able to handle single concerns as well as crosscutting con-
cerns. The result is that the complexity of the program decreases and main-
tenance, testability and code reuse increases.

Aspect-Oriented Programming is based on the following three concepts:
JoinPoints, Advices and PointCuts. Several aspects that are commonly im-
plemented with Aspect-Oriented programming are error checking and han-
dling, synchronization, monitoring and logging and debugging.

5

3.1 JoinPoints

First we have to define were the crosscutting concerns occur in the program.
This can be any point in the program during execution. This can be

• Method call and execution

• Constructor call and execution

• Initialization of classes and objects

3.2 Advices

An advice is the piece of code that is executed at a certain JoinPoint. This
code can be executed before, after or around the JoinPoint.

Around

The before and after advice executes the code before or after the JoinPoint.
The around advice is a bit more complex, because code can be executed
before the JoinPoint is executed, but the result of the executed code of
the JoinPoint determines the effect of the advice that is executed after the
JoinPoint.

3.3 PointCuts

A collection of JoinPoints is called a PointCut. This is used to define the
set of concerns and what Advice is executed on these JoinPoints.

4 Aspect-Oriented Implementations

With these concepts a particular crosscutting concern is easily defined by
a PointCut that encapsulates all JoinPoints that have something to do
with the specific concern. After this the necessary code is written to define
the concern in an Advice. The concern is than enabled by combining the
PointCut with this Advice. Because the JoinPoints, PointCuts and Advices
are defined separately of the program, these are easily to maintain. The
JoinPoints can be in every part of the program (crosscutting) and can be
added very easy. All JoinPoints in a PointCut use the same code that takes
care of the concern because they share the same Advice. If the code for a
concern is changed, you only change the code of the Advice that belongs to
this concern. The original code has not to be modified.

6

4.1 Weaving

The workhorse of Aspect-Oriented Programming is Weaving. This combines
the original code with the separately defined Advices. This weaving is done
before the program is compiled. During the weaving the code of the Ad-
vices is added to the JoinPoints of the corresponding PointCuts. After this
is done, the new combined code is actually compiled. Notice this is only
possible when the execution model of the programming language belongs to
the set of compiled languages.

4.2 Java implementation

There are a lot of Aspect-Oriented Programming implementations for Java.
Like JBoss-AOP and Glassbox, but all are based on, or already merged
with AspectJ. The most complete and widely used implementation for Java.
Currently there is also a fully supported AspectJ development tool for the
Eclipse environment.

4.3 Other implementations

Because of the popularity of this programming paradigm a lot of other im-
plementation for several programming languages are developed. Like .net,
C and C++. All of these languages are compiled languages. This makes it
possible to weave the advices into the code before compiling the program.
This isn’t possible for interpreted languages because the code isn’t compiled
but directly interpreted and executed.

4.4 PHP implementations

To solve this problem of weaving before executing the program, some im-
plementations, of the Aspect-Oriented Programming paradigm in PHP, use
another script to read the file that is interpreted first, then all Advices are
added on the designated locations in the code. After this, the newly created
file is interpreted. This requires another script, time to read the original file,
a lot of find and replace operations and finally interpreting a non-optimized
new file. This can really slow down the execution time of the PHP code,
especially with large programs with a lot of Aspects. Another common used
solution is to add some libraries to the PHP interpreter. These libraries then
take care of the weaving before executing the file. This solution doesn’t re-
markably slow down the interpretation and execution process, but needs
some extra skills to create the library. Furthermore the PHP installation on

7

the server is modified to enable these libraries. That can result in less stable
services.

4.5 MFAOPHP implementation

A different approach to implement Aspect-Oriented Programming within
PHP is not to weave the Aspects before interpretation, but to weave the
Aspects by changing the interpreted code by reflection during interpretation.
Because you don’t need to modify the service and there is no extra overhead
for reading and changing the programming code in a source file, this method
probably is more stable and less time and memory consuming than the
existing methods. Unfortunately there are no scientific measurements about
the performance of MFAOPHP and other solutions.

4.5.1 Problems

How is this runtime weaving done? From PHP5 the PHP language supports
all aspects of Object-Oriented Programming including reflection. With this
addition it is possible to get information from any self defined object. You
can, for example, list the number of attributes of this object, or the meth-
ods with their parameters and the properties of these parameters. If these
methods are known and we can develop some object that contains one of
these methods as a JoinPoint and we develop an object to store these Join-
Points as a set into a PointCut. Then we only need an Advice and add this
to the PointCut. The problem is to add the extra code from the Advice to
the methods of the object defined as JoinPoints in the PointCut.

4.5.2 Solutions

A lot of packages are written for PHP. Packages are small addition for PHP
that can be added without changing or re-installing PHP services. A pack-
age can simply be installed by adding the package in the PHP configuration
file. The PHP Extension Community Library collects a lot of these pack-
ages and makes sure that the library only contains stable and well designed
extensions. One of these extensions is the Classkit package. This package
allows a running script to add, remove, rename, and redefine class methods
without reloading [9]. The first versions of MFAOPHP used Classkit, but
since 2004 this extension isn’t developed further. The current version of
MFAOPHP therefore uses Runkit, this package is fully backwards compati-
ble with Classkit and contains additional functionality like replace, rename,

8

and remove user defined functions and classes. And you can also define
customized superglobal variables for general purpose use [10].

4.5.3 Results

Combining the theory of Aspect-Oriented Programming, self reflection and
the Runkit extension results into MFAOPHP. Which exists of three simple
classes to enable Aspect-Oriented Programming in PHP.

The JoinPoint Class
First we have the JoinPoint class. This class simple has a constructor to
create a new JoinPoint that contains the class and the method of the Join-
Point. Only methods defined by the user can be uses as a JoinPoint. This
is checked in the constructor.

The PointCut Class
To create a set of the different JoinPoints, objects of the JoinPoint type
can be added to a PointCut object. The addJoinPoint method can not only
add single JoinPoints, but also selections of JoinPoints. For example:

• All methods of the given Class

• All private methods of the given Class

• All public methods of the given Class

• All protected methods of the given Class

When a selection is added, all methods are checked if it belongs to this se-
lection and if it is user defined.

The Aspect Class
When all JoinPoints are collected into a PointCut the Aspect can be cre-
ated with the Aspect Class. The constructor requires a PointCut, and Ad-
vice and the code that should be added. The Advice can be Before, After,
Around and Throws. This last Advice is not implemented yet, but when the
JoinPoint throws an exception, the code of this Aspect should be executed
(interpreted).

4.5.4 Examples

Aspect Oriented Programming can easily be used for securing or logging
objects in your program. Simply add Advices to important methods and

9

you can apply a certain Aspect in a uniform way without changing your
program. As an example I created a simple class in PHP. In the example I
use $MethodName, this variable is automatically added to each method that
is changed by an Aspect. $MethodName can be used to see which method
is responsible for executing an Advice.

class Example
{

function Foo()
{
echo "Inside foo\n";

}
function Bar()
{
echo "Inside bar\n";
return "Return value of bar";

}
}
// Create a new Example object
$example = new Example();

If we run this without the use of Aspect Oriented Programming the next
result can be achieved.

// Show objects without aspects
echo $example->Foo();
echo $example->Bar();

Output:

Inside foo
Inside bar
Return value of bar

Now we add Advices to the different methods of our example class.

// Create a new PointCut
$pointCut = new PointCut();

// Add JoinPoints to the PointCut
$pointCut->addJoinPoint(’Example’, ’Foo’);
$pointCut->addJoinPoint(’Example’, ’Bar’);

10

// Shorter way:
// $pointCut->addJoinPoint(’Example’, AllMethods);
// Also AllPrivate, AllPublic or AllProtected can be used.

// Add different types of aspects
$test1 = new Aspect($pointCut, before, ’echo "Before $MethodName";’);
$test2 = new Aspect($pointCut, after, ’echo "After $MethodName";’);
$test3 = new Aspect($pointCut, around,

’$Return = "New return value of $MethodName";’);

The next output shows the power of Aspect Oriented Programming in PHP.
We added code into several methods of our own class without changing these
classes themselves!

// Show objects with aspects
echo $example->Foo();
echo $example->Bar();

Output:

Before foo
Inside foo
After foo
New return value of foo
Before bar
Inside bar
After bar
New return value of bar

4.5.5 Discussion

Via the forum on the MFAOPHP website some comments where post [11]:

Constructors can’t return anything
Well, they can but it has no effect. In the JoinPoint constructor the return
true should be removed and the return false replaced with an exception.

Not using defined constants
You’ve declared constants at the top of Aspect.php (should be upper case)

11

but later in the class you’ve used the numeric literals rather than the con-
stants.

Formatting and comments
Not a huge issue but the formatting and commenting isn’t in line with the
PEAR guidelines. I only mention this because this is something which could
viably be added to the repository. Also, those un-indented, one line com-
ments peppered throughout the code are quite distracting IMHO.

5 Future Development

Take into respect the discussion points and add the Throws advice.

6 Special thanks

Special thanks to Gregor Kiczales who helped me with the correct definitions
and implementing MFAOPHP.

7 Nice to know

• MFAOPHP is downloaded over 200 times last year.

• MFAOPHP is translated into English, Chinese and Russian

• MFAOPHP is mentioned in a Software Engineering course of the Uni-
versity of Mannheim (Germany)

• MFAOPHP is mentioned on

– http://www.aosd.net

– http://www.phpbuilder.com

– http://www.cmsdevelopment.com

12

References

[1] Gertjan Laan (1999), En dan is er... Java, Academic Service

[2] Tengeler en Van Hylckama Vlieg (2005), PHP 5 Superboek, Van Duuren
Media

[3] Robert W. Sebesta (2002), Concepts of programmig languages, Addison
Wesley, vol. 5, pp. 25-31

[4] Alex Ruiz (2006), ObjectiveView, Ratio, vol. 9, pp. 29-38

[5] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Christina Videira Lopes, Jean-Marc-Loingtier and John Irwin (1997),
Aspect-Oriented Programming, Springer-Verlag

[6] Wikipedia (December 28, 2006), Comparison of programming languages,

[7] Java.com (December 28, 2007), About Java Technology

[8] PHP.net (December 28, 2007), PHP: Hypertext Preprocessor

[9] The Classkit package
http://pecl.php.net/package/classkit (January 8, 2008),

[10] The Runkit package
http://pecl.php.net/package/runkit (January 8, 2008),

[11] The MFAOPHP website
http://www.mfaop.com (January 8, 2008),

13

A JoinPoint.php

// JoinPoint Class
class JoinPoint {

// Private variables
// Class of this JoinPoint

private $joinClass = ’’;
// Method of this JoinPoint

private $joinMethod = ’’;

// JoinPoint Constructor
function __construct ($joinClass, $joinMethod)
{

// Verify the joinClass and joinMethod do exist
if ($this->verifyJoinPoint($joinClass, $joinMethod))
{

// If so, set the private variables
$this->joinClass = $joinClass;
$this->joinMethod = $joinMethod;
return true;

}
// If not, return false

else
{

return false;
}

}

// Verify the joinClass and joinMethod do exist
public function verifyJoinPoint ($joinClass, $joinMethod)
{

// Verify the joinClass with this joinMethod do exist
if (is_callable(array($joinClass, $joinMethod)))
{

$reflectionClass = new ReflectionClass($joinClass);
$reflectionMethod = new ReflectionMethod($joinClass,

$joinMethod);
// Verify the joinClass and JoinMethod are user defined

if ($reflectionClass->isUserDefined() &&
$reflectionMethod->isUserDefined())

{
// If so, return true

return true;
}

14

else
{

// If not, return false
return false;

}
}
else
{

// If not, return false
return false;

}
}

// Set private joinClass method
public function setJoinClass ($joinClass)
{

// Verify the joinClass with this joinMethod do exist
if ($this->verifyJoinPoint($joinClass, $this->joinMethod))
{

// If so, set the private joinClass variable
$this->joinClass = $joinClass;
return true;

}
else
{

// If not, return false
return false;

}
}

// Set private joinMethod method
public function setJoinMethod ($joinMethod)
{

// Verify the joinMethod in this joinClass do exist
if ($this->verifyJoinPoint($this->joinClass, $joinMethod))
{

// If so, set the private joinMethod variable
$this->joinMethod = $joinMethod;
return true;

}
else
{

// If not, return false
return false;

}

15

}

// Get private joinClass method
public function getJoinClass ()
{

// Return private joinClass variable
return $this->joinClass;

}

// Get private joinMethod method
public function getJoinMethod ()
{

// Return private joinMethod variable
return $this->joinMethod;

}
}

B PointCut.php

// Define standard methods to add as JoinPoint
define("userdefinedmethod", 0, true);
define("allmethods", 1, true);
define("allprivate", 2, true);
define("allpublic", 3, true);
define("allprotected", 4, true);

// PointCut Class
class PointCut {

// Private variables
// JoinPoints in this PointCut

private $joinPoints = array();
// Number of JoinPoints

private $numberOfJoinPoints = 0;
// Selected JoinPoint

private $selectedJoinPoint = 0;

// Get first JoinPoint method
public function getFirstJoinPoint ()
{

// Verify there is atleast one JoinPoint
if ($this->numberOfJoinPoints > 0)
{

// If so, select the first JoinPoint

16

$this->selectedJoinPoint = 0;
// Return the first JoinPoint

return $this->joinPoints[$this->selectedJoinPoint];
}
else
{

// If not, return false
return false;

}
}

// Get last JoinPoint methdo
public function getLastJoinPoint ()
{

// Verify there is at least one JoinPoint
if ($this->numberOfJoinPoints > 0)
{

// If so, select the last JoinPoint
$this->selectedJoinPoint = $this->numberOfJoinPoints - 1;

// Return the last JoinPoint
return $this->joinPoints[$this->selectedJoinPoint];

}
else
{

// If not, return false
return false;

}
}

// Get selected JoinPoint method
public function getJoinPoint ()
{

// Verify the selected JoinPoint is a JoinPoint
if ($this->selectedJoinPoint < $this->numberOfJoinPoints &&

$this->selectedJoinPoint > -1)
{

// If so, return the selected JoinPoint
return $this->joinPoints[$this->selectedJoinPoint];

}
else
{

// If not, return false
return false;

}
}

17

// Get next JoinPoint method
public function getNextJoinPoint ()
{

// Verify there is a next JoinPoint
if ($this->selectedJoinPoint < $this->numberOfJoinPoints - 1)
{

// If so, select the next JoinPoint
$this->selectedJoinPoint += 1;

// Return the next JoinPoint
return $this->joinPoints[$this->selectedJoinPoint];

}
else

// If not, return false
{

return false;
}

}

// Get Previous JointPoint method
public function getPreviousJoinPoint ()
{

// Verify there is a previous JoinPoint
if ($this->selectedJoinPoint > 0)
{

// If so, select the previous JoinPoint
$this->selectedJoinPoint -= 1;

// Return the previous JoinPoint
return $this->joinPoints[$this->selectedJoinPoint];

}
else
{

// If not, return false
return false;

}
}

// Add a new JoinPoint to this PointCut
public function addJoinPoint ($joinClass, $joinMethod)
{

// Select if JoinMethod is UserDefinedMethod (Default),
// AllMethods, AllPrivate, AllPublic or AllProtected

switch ($joinMethod)
{

// AllMethods: Add all methods of this Class

18

case 1:
// Get all methods by reflection

$reflectionClass = new ReflectionClass($joinClass);
$classMethods = $reflectionClass->getMethods();
foreach ($classMethods as $classMethod)
{

// Add this class with each method as a new JoinPoint
$this->joinPoints[$this->numberOfJoinPoints] =

new JoinPoint ($joinClass, $classMethod->getName());
// Increase the number of JoinPoints by one

$this->numberOfJoinPoints += 1;
}
break;

// AllPrivate: Add all private methods of this Class
case 2:

// Get all methods by reflection
$reflectionClass = new ReflectionClass($joinClass);
$classMethods = $reflectionClass->getMethods();
foreach ($classMethods as $classMethod)
{

// Verify each method is private
if ($classMethod->isPrivate())
{

// If so, add this class with this method as a new JoinPoint
$this->joinPoints[$this->numberOfJoinPoints] =

new JoinPoint ($joinClass, $classMethod->getName());
// Increase the number of JoinPoints by one

$this->numberOfJoinPoints += 1;
}

}
break;

// AllPublic: Add all public methods of this Class
case 3:

// Get all methods by reflection
$reflectionClass = new ReflectionClass($joinClass);
$classMethods = $reflectionClass->getMethods();
foreach ($classMethods as $classMethod)
{

// Verify each method is public
if ($classMethod->isPublic())
{

// If so, add this class with this method as a new JoinPoint
$this->joinPoints[$this->numberOfJoinPoints] =

new JoinPoint ($joinClass, $classMethod->getName());
// Increase the number of JoinPoints by one

19

$this->numberOfJoinPoints += 1;
}

}
break;

// AllProtected: Add all protected methods of this Class
case 4:

// Get all methods by reflection
$reflectionClass = new ReflectionClass($joinClass);
$classMethods = $reflectionClass->getMethods();
foreach ($classMethods as $classMethod)
{

// Verify each method is protected
if ($classMethod->isProtected())
{

// If so, add this class with this method as a new JoinPoint
$this->joinPoints[$this->numberOfJoinPoints] =

new JoinPoint ($joinClass, $classMethod->getName());
// Increase the number of JoinPoits by one

$this->numberOfJoinPoints += 1;
}

}
break;

// UserDefinedMethods Add the user defined method of a Class
default:

// Verify the class and the method exist
if (JoinPoint::verifyJoinPoint($joinClass, $joinMethod))
{

// If so, add this class with this method as a new JoinPoint
$this->joinPoints[$this->numberOfJoinPoints] =

new JoinPoint ($joinClass, $joinMethod);
// Increase the number of JoinPoints by one

$this->numberOfJoinPoints += 1;
return true;

}
else
{

// If not, return false
return false;

}
}

}

// Get number of JoinPoints Method
public function getNumberOfJoinPoints ()
{

20

// Return the number of JoinPoints
return $this->numberOfJoinPoints;

}

// Print all JoinPoints in the current window
public function printJoinPoints ()
{

// Remember the selected JoinPoint
$tempSelectedJoinPoint = $this->selectedJoinPoint;

// Set the selected JoinPoint to -1
$this->selectedJoinPoint = -1;

// Loop through the JoinPoints
while ($tempJoinPoint = $this->getNextJoinPoint())
{

// Print the JoinPoint class and the JoinPoint method
echo "JoinPoint ".$this->selectedJoinPoint.":
";
echo "- Class <I>".$tempJoinPoint->getJoinClass()."</I>
";
echo "- Method <I>".$tempJoinPoint->getJoinMethod()."</I>
";

}
// Reset the selected JoinPoint

$this->selectedJoinPoint = $tempSelectedJoinPoint;
// Return true

return true;
}

// Set selected JoinPoint method
public function setSelectedJoinPoint ($joinPoint)
{

// Verify the JoinPoint exists
if ($joinPoint < $this->numberOfJoinPoints && $joinPoint > -1)
{

// If so, set the selected JoinPoint
$this->selectedJoinPoint = $joinPoint;
return true;

}
else
{

// If not, return false
return false;

}
}

// Get the selected JoinPoint
public function getSelectedJoinPoint ()
{

21

// Return the selected JoinPoint
return $this->selectedJoinPoint;

}
}

C Aspect.php

// Define standard aspects
define("before", 0, true);
define("after", 1, true);
define("around", 2, true);
define("throws", 3, true);

// Aspect class
class Aspect {

// Aspect Constructor
function __construct($pointCut, $advice, $code)
{

// Variable for looping through the JoinPoints of the PointCut
$joinPointCrawler = 0;

// Loop throught the JoinPoints of the PointCut
while ($joinPointCrawler < $pointCut->getNumberOfJoinPoints())
{

// Set selected JoinPoint
$pointCut->setSelectedJoinPoint($joinPointCrawler);

// Copy the selected JoinPoint in a temporary JoinPoint
$tempJoinPoint = $pointCut->getJoinPoint();

// Get the class and the method
$tempClass = $tempJoinPoint->getJoinClass();
$tempMethod = $tempJoinPoint->getJoinMethod();

// Find a non-existing temporary method
while ((is_callable(array($tempClass, $tempMethod))))
{

// Add "AOP_" to create a possible non-existing temporary method
$tempMethod = "AOP_".$tempMethod;

}

// Rename the method to the temporary method
classkit_method_rename(

$tempClass,
$tempJoinPoint->getJoinMethod(),
$tempMethod

);

22

// Retrieve the methodType by reflection
$reflectionMethod = new ReflectionMethod($tempClass, $tempMethod);

// Clear the methodType
$methodType = ’’;

// If the methodType is private, set the methodType private
if ($reflectionMethod->isPrivate())
{

$methodType = CLASSKIT_ACC_PRIVATE;
}

// Elseif the methodType is protected, set the methodType protected
else if ($reflectionMethod->isProtected())
{

$methodType = CLASSKIT_ACC_PROTECTED;
}

// else the methodType is public, set the methodType public
else
{

$methodType = CLASSKIT_ACC_PUBLIC;
}

// Clear the methodArguments
$methodArguments = ’’;

// Retrieve the method arguments by reflection
foreach ($reflectionMethod->getParameters() as $i => $methodParameters)
{

// Seperate the arguments with ’, ’
if ($i != 0)
{

$methodArguments .= ’, ’;
}

// Add & if the argument is passed by reference
if ($methodParameters->isPassedByReference())
{

$methodArguments .= ’&’;
}

// Finally add the methodname
$methodArguments .= ’$’.$methodParameters->getName();

}

// Select the type of advice of this JoinPoint
switch ($advice)
{

23

// Before: The code is placed before the original method
case 0:

$methodCode = $code.’return self::’.$tempMethod.
’(’.$methodArguments.’);’;

break;
// After: The code is placed after the original method
// Therefore the return value is lost in the new method

case 1:
$methodCode = ’self::’.$tempMethod.’(’.$methodArguments.’);’.

$code;
break;

// Around: The code is placed between the original method
// and the return value of this method

case 2:
$methodCode = ’$return = self::’.$tempMethod.

’(’.$methodArguments.’);’.$code.’return $return;’;
break;

// Throws: When trowing or catching an exception, not implemented yet
case 3:

$methodCode = ’return self::’.$tempMethod.
’(’.$methodArguments.’);’;

break;
// Default: No code, just the original method

default:
$methodCode = ’return self::’.$tempMethod.

’(’.$methodArguments.’);’;
}

// The MethodName is added as a variable to the new Method
$methodCode = ’$MethodName = ’.$tempJoinPoint->getJoinMethod().’;’.

$methodCode;
// Create a new method with the original name, arguments and type

classkit_method_add
(

$tempClass,
$tempJoinPoint->getJoinMethod(),
$methodArguments,
$methodCode,
$methodType

);
// Increase the joinPointCrawler by one

$joinPointCrawler++;
}

}
}

24

