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1. Abstract  

In this paper we describe how we tried to give a robot 
arm social interactive behavior based on its video input 
via a webcam. Based on Brooks subsumption 
architecture, each form of behavior was implemented into 
a different layer. Not much information is known about 
this approach for social interactive robots, resulting in 
most of the paper to explain how my idea was to 
implement behavior into the robot and what the results 
were.   

2. Introduction  

Futuristic films feature many robots as human-like 
machines. Getting to the point where robots are like 
humans, by giving them the ability to think, respond and 
sense, is still far from where we are nowadays. Since it is 
not easy to comprehend the human mind, creating 
realistic behavior for robots is difficult to accomplish. 
One social interactive robot is KISMET [1], a robot 
programmed to mimic reaction, which is only a small part 
of what we define as social behavior. Our project focuses 
on creating realistic basic social behavior, using only a 
mechanical arm for movement and a sensor for vision. It 
aims at demonstrating that minimal mechanical and 
computational complexity can generate behavior that is 
perceived by onlookers as intended social response. 

Much research was done in robotics and artificial 
intelligence, resulting in different ideas on how to design 
behavior based robots. A well-known approach towards 
behavior based artificial intelligence is Brooks

 

subsumption architecture [2], where the programming is 
done within several layers, each having their own input, 
output and priority. The output should not depend on 
results from other layers and all control the robot 
individual. Amir and Maynard-Zhang [3], layer-
decoupling of tasks has the possibility of achieving more 
reactive behavior, which is what we are working towards. 

Subsumption architecture was often applied to develop 
robots [4], but most were not programmed for social 
interaction. MY REAL BABY [5] is an interactive 
animated doll, apparently implemented using 
subsumption architecture. Not much information is 

available about this doll, it was made for commercial 
purposes, not scientific. 

But how to build a socially reactive robot using this 
method? Stojanov [6] indicates four different levels of 
mechanical behavior. The first category is the pure 
reactive system, which is the main functionality for our 
robot. The next level would be the ability to learn, by 
adding memory structures. So the first layers being 
created will only make it react, using a good priority 
system within the layers. After this, the robot can be 
extended to add other features, such as memory 
structures. The other two levels are eclectic architecture 
and the interactionist approach. 

In this paper we answer the question whether it is 
possible to create a social interactive robot, able to 
interact naturally with a human, using the subsumption 
architecture and minimal mechanical and computational 
complexity.   

3. Concept  

Using the subsumption architecture, a clear layered 
concept was needed for making our robot, in which every 
layer has its own input and output connection to the real 
world. Our focus is on social interaction via the visual 
system of the robot, so all input comes from a webcam. 
The webcam captures a large stream of images, requiring 
our system to process it fast into useful data. This 
conversion is being done by the visual preprocessor, 
which outputs a matrix to the behavioral layers to 
calculate information from. 

The layers themselves implement levels of behavior 
given to the robot. The human race is very complex, even 
when only focusing on what we do visually. Most actions 
we do as response to what we see, we are hardly aware 
off. There are four major factors which we started with, 
all normal reactions a human would have: 

1. Reflex; When a person or object comes very close 
at a high speed, for example when assaulted, you 
would recoil for your own safety. 

2. Focus; If you notice any movement, you tend to 
focus your attention to that object. 

3. Distance; When an object has your attention but is 
distant, you need to come closer to examine it. 



Figure 1: A schematic representation of the system controlling the robotic arm 

4. Explore; When there is either no movement 
around you, or when focusing on the same object 
for a longer time, you will start looking around in 
the room for something different that might be 
interesting to look at. 

    These factors each define a different behavioral layer 
for the robot, where each processes its inputs differently. 

The idea behind the subsumption architecture is that 
no layer depends on another and has its own control over 
the robot s movement. Our program combines the motion 
output from the four layers and converts it into a single 
movement for the robot to make.  

The robotic arm needs to be coordinated for it to 
understand which components to move, in what direction 
and with what speed. The robot arm has six degrees of 
freedom: the shoulder and wrist are able to rotate and 
bend, the elbow can only bend, and the hand grasps with 
its fingers . Controlling this arm is done using a 
coordinator module. Figure 1 illustrates the overall 
modular structure of our system.  

4. Implementation  

For our robot, we did all the implementation in the 
language Max/MSP/Jitter [7]. Its main advantage with 
regard to our project, is its ability to get data from video 
input fast and calculate with this information.  

4a. Visual Preprocessor  

The main purpose of the visual preprocessor is to 
receive the video input stream and convert it into useful 
data for the behavioral layers. It is built within three small 
layers, to be able to give different data depending on what 
is needed as input for each layer. 

First, the input control ensures that the video input is 
handled correctly, depending on the frame rate and size. 
The frame rate applied in our system is 5 frames per 
second. An image is considered an ARGB-matrix, a four-
planar matrix, containing values between 0 and 255 for 
each color s intensity. While the video input is 640x480, 
the data is stored in a 16x16 ARGB-matrix and is the first 
output of the visual preprocessor. Main reason being to 
have faster calculations in the following layers. 

For the preprocessor to calculate movement, each two 
consecutive frames are subtracted, storing it in a third 
four-planar matrix. In this new matrix, non-zero values 
indicate where in the frame space movement took place. 

The final function of the visual preprocessor is 
converting an ARPG-matrix into a single-planar matrix. 
The main reason for this conversion is to simplify later 
calculations and make heavy movement simpler to detect, 
the robot basically has a grayscale vision. Converting is 
done by summing up the values in the three color planars, 
discarding the alpha-planar which doesn t add 
information for our robot. These summed up values are 
first divided by the scalar 16 before being added, 
otherwise results higher than 255 could appear. 

Though the matrix from the direct video input and the 
subtracted could be used for the behavioral layers, only 
the final single-planar matrix is being forwarded. This 
gives us the motion information needed for later 
calculations in a small and simple 16x16 matrix, without 
having to discard useless information over and over. If 
other information is needed after all, it can still be passed 
to the corresponding layer.  

4b. Layer: Reflex  

This behavioral layer is relatively simple; its 
functionality is to add all the values in the motion matrix 
and give us the result in a single number. When an object, 
like a hand, comes close to the robot within its visual field 
at a high velocity, this single number will be very high. 
No movement at all will result in a low value. When this 
result becomes too high, the reflective action should be 
enabled and the robot recoils at a relative high speed, 

Figure 2: How the robot arm needs to compensate when 
the shoulder moves; from the original position (a) the 
shoulder recoils (b), resulting in moving the elbow to 
compensate the height (c) and the wrist to compensate for 
the direction(d) 



equally to the human reaction. After this reaction, the 
robot will automatically move forward again to its old 
position, but at a slower rate. Until the robot is back at its 
former position before the recoil, no second reflex can 
take place. 

On activating the reflex, the robot shoulder recoils and 
both the elbow and the wrist change their angle too, 
compensating the change in height as shown in figure 2.  

4c. Layer: Focus  

The most important layer of the three, containing 
several calculations to get the information needed for the 
robot to focus on a moving object. Its goal is to move the 
robot arm in the direction where movement was detected 
as if it is focusing on the moving person or object. It aims 
to position the motion at the center of the visual field.  

To calculate a coordinate for the robot to focus on, 
several methods exist. Our first implementation was 
finding the maximum motion value and calculate its 
coordinates. The problem with this method is that it finds 
the position with the most movement, which is always 
around the edge of a moving object and not within. The 
maximum value of the waving hand in Figure 2 would be 
at the ring finger, and not at the middle of the hand. For 
this reason, a mathematical method was used to find the 
middle of the moving object. Per row and column the 
total sum is calculated and then multiplied by its row or 
column number. At the end this value is divided by the 
sum of all the values in the matrix, giving us a coordinate 
which has the most movement around itself:  

Now the coordinates are known, we can calculate the 
movement the robot needs to do in order to have the 
detected motion in the middle of its visual field. By 
simply subtracting each coordinate by eight, being the 
centre of the 16x16 matrix, the direction the robot has to 
move towards is calculated. These two results have a 
value between minus eight and eight. When the row 

coordinate has a positive value, the robot arm receives the 
message to move to the right, and moves to the left when 
the value is negative. The same method is applied to the 
column coordinates, where a positive value results in the 
robot looking down. If the absolute value of the 
directional result is high, obviously the motion detected 
was further away from the middle, which results in the 
robot moving faster in the given direction.   

4d. Layer: Distance  

The purpose of this layer is similar to the function of 
the focus layer, difference being that focus works in the 
horizontal and vertical dimensions, whereas the distance 
layer works with depth. A human has two eyes for an 
important reason, so it is able to see depth in the world 
around him. Our robot only contains a single webcam, 
making it hard to calculate the real depth of an object. 
Resultingly, this layer has little influence on the 
interaction of the robot arm, but is still valuable. Human 
behavior is to come closer to an object that is small, to be 
able to see it more detailed, and when looking at a big 
object we tend to move backwards to be able to see it as a 
whole. This also includes the social distance, meaning 
when interacting with a person you keep a certain 
distance and do not shout over a long distance, or touch 
each other s noses. In essence, this layer scales (zooms in 
or out) to make the object fit in its visual field. 

For this layer, first the amount of consecutive empty 
rows and columns on both sides of the motion matrix is 
calculated. For example, when the sum of the first and 
last columns have minimum values, the counter is 
heightened by one. Then the second and penultimate are 
checked for movement, in case this is detected, no more 
columns are checked and the value of the counter is 
forwarded. 

When this value is bigger than two for the columns 
and the rows, the object is apparently too small within the 
visual field of the robot. The reaction would be to move 
the robot arm forward to get closer to this object. When 
both are smaller than two, the object is big and might not 
even fit within the matrix, resulting in a backwards 
retraction. When there is not much movement, the results 
would always be higher than two, resulting in a constant 
zooming in. We prevented this by adding the requirement 
that there has to be enough movement in the image to 
enable motion of the robot. 

Equally to the reflex function, this layer activates its 
movements by changing the angle of the shoulder, elbow 
and wrist (see Figure 2). When enabled, these axes rotate 
with a constant factor, whereas the focus layer is using a 
variable value in order to control the robot s movement.  

4e. Layer: Explore  
Figure 3: A waving hand is detected as shown in the 
right picture 

Row.coordinate = ( Row(0).sum*0 + Row(1).sum*1 
+  + Row(n).sum*n ) / Matrix.sum  

Column.coordinate = ( Row(0).col*0 + Row(1).col*1 
+  + Row(n).col*n ) / Matrix.sum 

 



Goal of this layer is to snap out of the focus and look 
around, but only when there is no movement detected by 
the robot. It then starts to explore the room around him, 
trying to find movement elsewhere. Notice how it is 
already split into two parts, likewise to how the robot is 
programmed. 

The explore layer starts in the focused state, which 
means it isn t moving around and pays attention to a 
person or moving object. He loses interest though when 
all movement is gone, and start its boredom timer . For 
every frame in which no motion is detected, its counter 
gets raised, and when the limit is reached, it switches to 
the explorative state. Movement resets this counter 
though, resulting in the exploration to start only after 5 
consecutive seconds without motion. 

This second state, the explorative state, simply means 
looking around randomly and searching for movement. 
When this is detected, it stops exploring and goes back to 
the focused state.  

4f. Scheduler  

The output of the behavioral layers are send to the 
scheduler. In here, the values get split into five groups, 
one for each axes. Since multiple layers control single 
axes, the scheduler gives priority to the highest value, i.e. 
the biggest motion. The final function in the scheduler is 
to add the values of each axes into a command for the 
robot arm itself. 

The moment the coordinator gives a signal to the 
scheduler, a command can be send to the robot. These 
commands are send in a specific order: 

1. At the start the homing

 

position is saved, this is 
the angle of each specific axes. 

2. The commands from the scheduler change the 
values of the positions for each axis. After five 
commands have taken place, a new position is 
generated. 

3. The final command in the scheduler is to force the 
robot to move towards the newly created position.  

4g. Coordinator  

The coordinator forwards its commands to the robot 
arm and awaits the robot s signal with the message it is 
ready for the next command. This signal is forwarded to 
the scheduler. In addition, the text messages generated by 
the robot are printed and can be used as feedback to the 
user.  

5. Discussion  

Unfortunately we were unable to test the robot s level 
of social interaction, which were caused by two major 
problems. 

As explained before, the scheduler generates five new 
coordinates for the robot, a new coordinate for each of the 
axes, followed by the move command. This results in six 
commands have to be send to the robot for simply moving 
around, with the given input from the behavioral layers. 
Merely five of these sequences can be executed per 
second, including the webcam input, making the robot s 
responses slow compared to human behavior. Besides, all 
of the movements are done at an equally high speed. 
When the reaction requires a heavy movement, the robot 
will be at the right coordinate in time when it has a high 
pace. For short distances, the tempo is too high and 
results in unnatural vibrations, shaking the table the robot 
arm was placed upon. 

Another weak link in our program is lacking 
background subtraction. Motion is detected by subtracting 
the last two frames from the webcam. When the robot 
moves, including the webcam, the background is a little 
different compared to the previous frame and is thus seen 
as motion. This distortion results in none of the 
behavioral layers to work properly. Nonetheless the robot 
does follow a heavily waving hand, recoil when you try to 
punch it, or start looking around when it doesn t see any 
movement for too long. 

One might wonder whether we had any positive results 
at all. The robot is fully build up with the subsumption 
architecture, containing seven independent layers. The 
behavioral layers can be enabled and disabled without 
causing any conflicts with the other layers. 

[MIS IK HIER NOG WAT???]  
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