
Subsumption Architecture-Based Social Interactive Robot Arm

Jens van de Water, Maarten H. Lamers
Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands

jensvdwater@planet.nl, lamers@liacs.nl

1. Abstract

In this paper we describe how we tried to give a robot
arm social interactive behavior based on its video input
via a webcam. Based on Brooks subsumption
architecture, each form of behavior was implemented into
a different layer. Not much information is known about
this approach for social interactive robots, resulting in
most of the paper to explain how my idea was to
implement behavior into the robot and what the results
were.

2. Introduction

Futuristic films feature many robots as human-like
machines. Getting to the point where robots are like
humans, by giving them the ability to think, respond and
sense, is still far from where we are nowadays. Since it is
not easy to comprehend the human mind, creating
realistic behavior for robots is difficult to accomplish.
One social interactive robot is KISMET [1], a robot
programmed to mimic reaction, which is only a small part
of what we define as social behavior. Our project focuses
on creating realistic basic social behavior, using only a
mechanical arm for movement and a sensor for vision. It
aims at demonstrating that minimal mechanical and
computational complexity can generate behavior that is
perceived by onlookers as intended social response.

Much research was done in robotics and artificial
intelligence, resulting in different ideas on how to design
behavior based robots. A well-known approach towards
behavior based artificial intelligence is Brooks

subsumption architecture [2], where the programming is
done within several layers, each having their own input,
output and priority. The output should not depend on
results from other layers and all control the robot
individual. Amir and Maynard-Zhang [3], layer-
decoupling of tasks has the possibility of achieving more
reactive behavior, which is what we are working towards.

Subsumption architecture was often applied to develop
robots [4], but most were not programmed for social
interaction. MY REAL BABY [5] is an interactive
animated doll, apparently implemented using
subsumption architecture. Not much information is

available about this doll, it was made for commercial
purposes, not scientific.

But how to build a socially reactive robot using this
method? Stojanov [6] indicates four different levels of
mechanical behavior. The first category is the pure
reactive system, which is the main functionality for our
robot. The next level would be the ability to learn, by
adding memory structures. So the first layers being
created will only make it react, using a good priority
system within the layers. After this, the robot can be
extended to add other features, such as memory
structures. The other two levels are eclectic architecture
and the interactionist approach.

In this paper we answer the question whether it is
possible to create a social interactive robot, able to
interact naturally with a human, using the subsumption
architecture and minimal mechanical and computational
complexity.

3. Concept

Using the subsumption architecture, a clear layered
concept was needed for making our robot, in which every
layer has its own input and output connection to the real
world. Our focus is on social interaction via the visual
system of the robot, so all input comes from a webcam.
The webcam captures a large stream of images, requiring
our system to process it fast into useful data. This
conversion is being done by the visual preprocessor,
which outputs a matrix to the behavioral layers to
calculate information from.

The layers themselves implement levels of behavior
given to the robot. The human race is very complex, even
when only focusing on what we do visually. Most actions
we do as response to what we see, we are hardly aware
off. There are four major factors which we started with,
all normal reactions a human would have:

1. Reflex; When a person or object comes very close
at a high speed, for example when assaulted, you
would recoil for your own safety.

2. Focus; If you notice any movement, you tend to
focus your attention to that object.

3. Distance; When an object has your attention but is
distant, you need to come closer to examine it.

Figure 1: A schematic representation of the system controlling the robotic arm

4. Explore; When there is either no movement
around you, or when focusing on the same object
for a longer time, you will start looking around in
the room for something different that might be
interesting to look at.

 These factors each define a different behavioral layer
for the robot, where each processes its inputs differently.

The idea behind the subsumption architecture is that
no layer depends on another and has its own control over
the robot s movement. Our program combines the motion
output from the four layers and converts it into a single
movement for the robot to make.

The robotic arm needs to be coordinated for it to
understand which components to move, in what direction
and with what speed. The robot arm has six degrees of
freedom: the shoulder and wrist are able to rotate and
bend, the elbow can only bend, and the hand grasps with
its fingers . Controlling this arm is done using a
coordinator module. Figure 1 illustrates the overall
modular structure of our system.

4. Implementation

For our robot, we did all the implementation in the
language Max/MSP/Jitter [7]. Its main advantage with
regard to our project, is its ability to get data from video
input fast and calculate with this information.

4a. Visual Preprocessor

The main purpose of the visual preprocessor is to
receive the video input stream and convert it into useful
data for the behavioral layers. It is built within three small
layers, to be able to give different data depending on what
is needed as input for each layer.

First, the input control ensures that the video input is
handled correctly, depending on the frame rate and size.
The frame rate applied in our system is 5 frames per
second. An image is considered an ARGB-matrix, a four-
planar matrix, containing values between 0 and 255 for
each color s intensity. While the video input is 640x480,
the data is stored in a 16x16 ARGB-matrix and is the first
output of the visual preprocessor. Main reason being to
have faster calculations in the following layers.

For the preprocessor to calculate movement, each two
consecutive frames are subtracted, storing it in a third
four-planar matrix. In this new matrix, non-zero values
indicate where in the frame space movement took place.

The final function of the visual preprocessor is
converting an ARPG-matrix into a single-planar matrix.
The main reason for this conversion is to simplify later
calculations and make heavy movement simpler to detect,
the robot basically has a grayscale vision. Converting is
done by summing up the values in the three color planars,
discarding the alpha-planar which doesn t add
information for our robot. These summed up values are
first divided by the scalar 16 before being added,
otherwise results higher than 255 could appear.

Though the matrix from the direct video input and the
subtracted could be used for the behavioral layers, only
the final single-planar matrix is being forwarded. This
gives us the motion information needed for later
calculations in a small and simple 16x16 matrix, without
having to discard useless information over and over. If
other information is needed after all, it can still be passed
to the corresponding layer.

4b. Layer: Reflex

This behavioral layer is relatively simple; its
functionality is to add all the values in the motion matrix
and give us the result in a single number. When an object,
like a hand, comes close to the robot within its visual field
at a high velocity, this single number will be very high.
No movement at all will result in a low value. When this
result becomes too high, the reflective action should be
enabled and the robot recoils at a relative high speed,

Figure 2: How the robot arm needs to compensate when
the shoulder moves; from the original position (a) the
shoulder recoils (b), resulting in moving the elbow to
compensate the height (c) and the wrist to compensate for
the direction(d)

equally to the human reaction. After this reaction, the
robot will automatically move forward again to its old
position, but at a slower rate. Until the robot is back at its
former position before the recoil, no second reflex can
take place.

On activating the reflex, the robot shoulder recoils and
both the elbow and the wrist change their angle too,
compensating the change in height as shown in figure 2.

4c. Layer: Focus

The most important layer of the three, containing
several calculations to get the information needed for the
robot to focus on a moving object. Its goal is to move the
robot arm in the direction where movement was detected
as if it is focusing on the moving person or object. It aims
to position the motion at the center of the visual field.

To calculate a coordinate for the robot to focus on,
several methods exist. Our first implementation was
finding the maximum motion value and calculate its
coordinates. The problem with this method is that it finds
the position with the most movement, which is always
around the edge of a moving object and not within. The
maximum value of the waving hand in Figure 2 would be
at the ring finger, and not at the middle of the hand. For
this reason, a mathematical method was used to find the
middle of the moving object. Per row and column the
total sum is calculated and then multiplied by its row or
column number. At the end this value is divided by the
sum of all the values in the matrix, giving us a coordinate
which has the most movement around itself:

Now the coordinates are known, we can calculate the
movement the robot needs to do in order to have the
detected motion in the middle of its visual field. By
simply subtracting each coordinate by eight, being the
centre of the 16x16 matrix, the direction the robot has to
move towards is calculated. These two results have a
value between minus eight and eight. When the row

coordinate has a positive value, the robot arm receives the
message to move to the right, and moves to the left when
the value is negative. The same method is applied to the
column coordinates, where a positive value results in the
robot looking down. If the absolute value of the
directional result is high, obviously the motion detected
was further away from the middle, which results in the
robot moving faster in the given direction.

4d. Layer: Distance

The purpose of this layer is similar to the function of
the focus layer, difference being that focus works in the
horizontal and vertical dimensions, whereas the distance
layer works with depth. A human has two eyes for an
important reason, so it is able to see depth in the world
around him. Our robot only contains a single webcam,
making it hard to calculate the real depth of an object.
Resultingly, this layer has little influence on the
interaction of the robot arm, but is still valuable. Human
behavior is to come closer to an object that is small, to be
able to see it more detailed, and when looking at a big
object we tend to move backwards to be able to see it as a
whole. This also includes the social distance, meaning
when interacting with a person you keep a certain
distance and do not shout over a long distance, or touch
each other s noses. In essence, this layer scales (zooms in
or out) to make the object fit in its visual field.

For this layer, first the amount of consecutive empty
rows and columns on both sides of the motion matrix is
calculated. For example, when the sum of the first and
last columns have minimum values, the counter is
heightened by one. Then the second and penultimate are
checked for movement, in case this is detected, no more
columns are checked and the value of the counter is
forwarded.

When this value is bigger than two for the columns
and the rows, the object is apparently too small within the
visual field of the robot. The reaction would be to move
the robot arm forward to get closer to this object. When
both are smaller than two, the object is big and might not
even fit within the matrix, resulting in a backwards
retraction. When there is not much movement, the results
would always be higher than two, resulting in a constant
zooming in. We prevented this by adding the requirement
that there has to be enough movement in the image to
enable motion of the robot.

Equally to the reflex function, this layer activates its
movements by changing the angle of the shoulder, elbow
and wrist (see Figure 2). When enabled, these axes rotate
with a constant factor, whereas the focus layer is using a
variable value in order to control the robot s movement.

4e. Layer: Explore
Figure 3: A waving hand is detected as shown in the
right picture

Row.coordinate = (Row(0).sum*0 + Row(1).sum*1
+ + Row(n).sum*n) / Matrix.sum

Column.coordinate = (Row(0).col*0 + Row(1).col*1
+ + Row(n).col*n) / Matrix.sum

Goal of this layer is to snap out of the focus and look
around, but only when there is no movement detected by
the robot. It then starts to explore the room around him,
trying to find movement elsewhere. Notice how it is
already split into two parts, likewise to how the robot is
programmed.

The explore layer starts in the focused state, which
means it isn t moving around and pays attention to a
person or moving object. He loses interest though when
all movement is gone, and start its boredom timer . For
every frame in which no motion is detected, its counter
gets raised, and when the limit is reached, it switches to
the explorative state. Movement resets this counter
though, resulting in the exploration to start only after 5
consecutive seconds without motion.

This second state, the explorative state, simply means
looking around randomly and searching for movement.
When this is detected, it stops exploring and goes back to
the focused state.

4f. Scheduler

The output of the behavioral layers are send to the
scheduler. In here, the values get split into five groups,
one for each axes. Since multiple layers control single
axes, the scheduler gives priority to the highest value, i.e.
the biggest motion. The final function in the scheduler is
to add the values of each axes into a command for the
robot arm itself.

The moment the coordinator gives a signal to the
scheduler, a command can be send to the robot. These
commands are send in a specific order:

1. At the start the homing

position is saved, this is
the angle of each specific axes.

2. The commands from the scheduler change the
values of the positions for each axis. After five
commands have taken place, a new position is
generated.

3. The final command in the scheduler is to force the
robot to move towards the newly created position.

4g. Coordinator

The coordinator forwards its commands to the robot
arm and awaits the robot s signal with the message it is
ready for the next command. This signal is forwarded to
the scheduler. In addition, the text messages generated by
the robot are printed and can be used as feedback to the
user.

5. Discussion

Unfortunately we were unable to test the robot s level
of social interaction, which were caused by two major
problems.

As explained before, the scheduler generates five new
coordinates for the robot, a new coordinate for each of the
axes, followed by the move command. This results in six
commands have to be send to the robot for simply moving
around, with the given input from the behavioral layers.
Merely five of these sequences can be executed per
second, including the webcam input, making the robot s
responses slow compared to human behavior. Besides, all
of the movements are done at an equally high speed.
When the reaction requires a heavy movement, the robot
will be at the right coordinate in time when it has a high
pace. For short distances, the tempo is too high and
results in unnatural vibrations, shaking the table the robot
arm was placed upon.

Another weak link in our program is lacking
background subtraction. Motion is detected by subtracting
the last two frames from the webcam. When the robot
moves, including the webcam, the background is a little
different compared to the previous frame and is thus seen
as motion. This distortion results in none of the
behavioral layers to work properly. Nonetheless the robot
does follow a heavily waving hand, recoil when you try to
punch it, or start looking around when it doesn t see any
movement for too long.

One might wonder whether we had any positive results
at all. The robot is fully build up with the subsumption
architecture, containing seven independent layers. The
behavioral layers can be enabled and disabled without
causing any conflicts with the other layers.

[MIS IK HIER NOG WAT???]

6. References

[1] C. Breazeal, Designing Sociable Robots , MIT Press,
Cambridge (USA), 2002, Chapter 1

[2] R.A. Brooks, Intelligence without representation ,
MIT Artificial Intelligence Laboratory, Cambridge
(USA), 1987

[3] E. Amir, P. Maynard-Zhang, Logic-Based
Subsumption Architecture , Artificial Intelligence 153 (1-
2), 2004, pp 167-237.

[4] R.A. Brooks, How to Build Complete Creatures
Rather than Isolated Cognitive Simulators , MIT
Artificial Intelligence Laboratory, Cambridge (USA),
1991

[5] L. Nicks, The Robot The Life Story of a
Technology , Greenwood Press, Westport (USA), 2007

[6] G. Stojanov, Petitagé: A Case Study in
Developmental Robotics , In Balkenius, et al (Eds.),

Proceedings of Epigenetic Robotics 1, 2001

[7] Max/MSP/Jitter , Cycling 74, San Francisco (USA)

