
Don’t Rule Out Simple Models Prematurely:
a Large Scale Benchmark Comparing Linear and

Non-linear Classifiers in OpenML

Benjamin Strang1, Peter van der Putten2,
Jan N. van Rijn1,3, and Frank Hutter1

1 University of Freiburg, Germany
{benjamin.strang@students,vanrijn@cs,fh@cs}.uni-freiburg.de

2 Leiden University, The Netherlands
p.w.h.van.der.putten@liacs.leidenuniv.nl

3 Columbia University, USA
j.n.vanrijn@columbia.edu

Abstract. A basic step for each data-mining or machine learning task is
to determine which model to choose based on the problem and the data at
hand. In this paper we investigate when non-linear classifiers outperform
linear classifiers by means of a large scale experiment. We benchmark
linear and non-linear versions of three types of classifiers (support vector
machines; neural networks; and decision trees), and analyze the results
to determine on what type of datasets the non-linear version performs
better. To the best of our knowledge, this work is the first principled and
large scale attempt to support the common assumption that non-linear
classifiers excel only when large amounts of data are available.

Keywords: Linear Classifiers, Meta-Learning, Benchmarking

1 Introduction

The experiments in many academic machine learning papers are designed to
answer which particular method works better, typically by introducing a new
algorithm and demonstrating success over a set of baselines or benchmarks. In a
recent paper, Sculley et al. (2018) pinpoint this as a problem: ‘Empirical studies
have become challenges to be won, rather than a process for developing insight
and understanding.’ [22] To counteract this, we propose to answer the question
when certain methods work better. Furthermore, we propose to add reference-
able large scale empirical support for rules of thumb that are frequently used by
data miners in real world applications. Meta learning studies can achieve these
goals and thereby help turn machine learning from what has recently been called
alchemy [16] into more of a principled engineering science. In this paper we will
investigate when non-linear models outperform linear models. This may appear
as a somewhat strange research question in this day and age, but linear models
are still frequently used in practice since they are simpler, typically computa-
tionally more efficient and (due to their simplicity) often easier to interpret than



modern non-linear models, such as deep learning models. With EU regulations
on algorithmic decision-making and a “right to an explanation” [9] which came
into effect on May 25, 2018, especially this often belittled dimension of inter-
pretability is bound to become one of the most important deciding factors in
day-to-day machine learning business. Furthermore, as our experiments demon-
strate, it is not a given that a non-linear classifier will outperform a linear one at
a statistically significant level. The underlying problem may simply be linear, or
more commonly, insufficient data is available to estimate complex relationships
reliably; furthermore, non-linear methods run a larger risk of overfitting given
that they are typically higher variance methods [15].

Our contributions are as follows: (i) We run a large scale meta learning exper-
iment on 299 datasets from OpenML [18,24], and compare linear vs. non-linear
variants of neural networks, support vector machines and decision trees. Based
on these datasets we give an indication when non-linear models may work better,
and how often. (ii) We train a meta model to predict when non-linear models
work better based on dataset characteristics. (iii) All experimental data and re-
sults are made available through OpenML, and the code used is made available
as a Jupyter notebook. (iv) Whilst we address a very common topic in modeling,
to the best of our knowledge this study is at least an order of magnitude larger
than other studies on this topic in terms of number of datasets included.

2 Related Work

We review the literature on some exemplar studies that either discuss the ques-
tion whether to use a linear or non-linear classifier, or use large scale experi-
mentation to answer general scientific questions. Due to the broadness of these
subject areas, this list is by no means complete.

Linear vs. Non-linear classifiers Various studies exist that compare linear
classifiers and non-linear classifiers. Typically the comparison of linear and non-
linear classifiers is performed in the context of a special modeling task, e.g.,
electricity consumption forecasting [10], CO2 emissions [13], aggregate retail
sales [4], EEG signal classification [7], corporate distress diagnosis [1], macroe-
conomic time series forecasting [23], routing [21] and epidemiological data [8].
These studies have in common that they are small scale experiments limiting
the performance comparison to a special field of application and a small number
of datasets. A simple general conclusion regarding the classification performance
of linear and non-linear models cannot be drawn from the aforementioned re-
lated work as the final conclusions of these studies differ regarding classification
performance. While in some studies [4,7,10,13] non-linear models in the form of
neural networks or support vector machines achieved a better performance, some
research groups find that non-linear components or methods are of no benefit or
worse than the particular linear modeling approach [8,21].

Large Scale Experimentation OpenML [18,24] offers infrastructure to con-
duct large scale experiments which provide a solid empirical foundation for an-



swering scientific questions. For each dataset, it contains a range of scientific
tasks and meta-features, and it also allows for uploading new experimental re-
sults. In the past, several large scale experiments have been conducted by various
research groups using this infrastructure. Flach and Kull (2015) use the experi-
mental results on OpenML to study characteristics of precision recall curves over
886 classification datasets [6]. Post et al. (2016) researched in which cases feature
selection improves classification performance on 399 classification datasets [14].
Olier et al. (2018) developed an algorithm selection method for QSAR’s, and
demonstrated its applicability on 2,700 QSAR problems [11]. Indeed, empirical
results are typically more credible when based on a large number of datasets.

3 Background

This work aims to answer the basic scientific question when to use a linear or
non-linear classifier by large scale experimentation. To achieve this, care needs
to be taken to build on a solid infrastructure and experimental setup. In this
section, we review the methods we used.

Datasets We prefer quality over quantity. As such, rather than using all of
the thousands of datasets on OpenML, we selected a (still large) set of diverse
datasets, i.e., the OpenML100 [3], which provides 100 datasets carefully selected
from the OpenML overall dataset repository. The OpenML100 is designed to con-
tain datasets that have a real world concept (rather than artificially generated
data), have a meaningful classification task, and are introduced by a scientific
publication. While the OpenML100 imposes dimensionality restrictions on the
datasets (i.e., 500–100,000 data points, 1–5,000 features), we also report on re-
sults on datasets outside this range. Like for the OpenML100, highly unbalanced
datasets with a minority class to majority class ratio of less than 0.05 were ex-
cluded. As this additional set of datasets is not as curated as the OpenML100,
these results are reported separately. The total number of datasets used is 299.

Classifiers This study considers support vector machines (SVMs), neural net-
works and decision trees, each of them in a linear and a non-linear variant. SVMs
natively support the notion of (non-)linearity by means of their kernel;

we use either a linear or an RBF kernel. For neural networks, next to a stan-
dard feed-forward network with hidden layers and non-linear (sigmoid) activation
functions, as a linear variant we consider a linear model with no hidden layers
trained by stochastic gradient descent. For decision trees, as a linear version we
consider a decision stump (a decision tree with depth 1); this is arguably a very
limited linear model, as it can only represent decision boundaries perpendicular
to one of the axes. This means that even when a dataset is linearly separable, a
decision stump might not be able to model it perfectly; however, we decided to
still include this as a representative of the popular class of tree-based models.1

1 In this study, we do not compare (still quite interpretable) decision trees against
(more powerful, yet less interpretable) random forests in order to limit ourselves
purely to a comparison of linear vs. non-linear models.



Table 1. Hyperparameters optimized by random search.

Classifier parameters

SVM (linear) C (2−5 . . . 215, log-scale), dual (boolean), imputation strategy, tol (10−5 . . . 10−1,
log-scale)

SVM (non-linear) C (2−5 . . . 215, log-scale), gamma (2−15 . . . 23, log-scale), imputation strategy, tol

(10−5 . . . 10−1, log-scale), shrinking (boolean)

NN (linear) alpha (10−7 . . . 10−1, log-scale), imputation strategy, learning rate (’optimal’, eta

= 1/(α · (t+ t0))), tol (10−5 . . . 10−1, log-scale), penalty (l2, l1, elasticnet)

NN (non-linear) alpha (10−7 . . . 10−1), early stopping (boolean), hidden layer size (32, 64, 128),

imputation strategy, initial learning rate (10−5 . . . 100, log-scale), num. hidden

layers (1, 2), tol (10−5 . . . 10−1)
DT (stump) criterion (gini, entropy), imputation strategy, max. features (0.1, 0.2, 0.3, . . . 1.0)
DT (non-linear) criterion (gini, entropy), imputation strategy, max. depth (2, 3, 5, 7, 10), max.

features (0.1, 0.2, 0.3, . . . 1.0)

Hyperparameter Optimization The performance of machine learning clas-
sifiers highly depends on hyperparameter optimization, which can often make
the difference between mediocre and state-of-the-art performance. In this study,
to minimize the bias resulting from the choice of a particular hyperparameter
optimization method, we use the simplest option: random search [2].

We use a budget of 250 iterations (in the case of the decision stump only 60
iterations due to the limited hyperparameter space). While more powerful opti-
mization methods, such as Bayesian optimization, are sometimes orders of mag-
nitudes faster, random search is simpler, trivially available in any programming
language, almost parameter-free, and robustly applicable across various types of
hyperparameter spaces, making it a straight-forward simple choice when we can
afford to evaluate a large number of configurations.

In order to determine which hyperparameters are important to optimize,
we followed the recommendations of [19]. Table 1 shows the hyperparameters
and ranges over which we performed random search. We note in particular that
this search space includes regularization hyperparameters, such as the penalty
parameter C in SVMs and the strength α of the L2 regularizer in neural networks.

Evaluation We use nested 10-fold cross-validation for evaluating the classifiers.
For each of the 10 outer cross-validation folds, the hyperparameter optimization
used an internal 3-fold cross-validation procedure on the training portion to
determine the best hyperparameters. The model is then re-fitted using the best
found hyperparameters on the full training set of that cross-validation fold, and
this is used to make predictions for the test set.

4 Linear versus Non-linear

This section aims to answer the primary question of this work, i.e., when to use
linear and non-linear classifiers.

Setup For each of the three classifier families, we perform hyperparameter op-
timization and measure the performance in terms of predictive accuracy of both



the linear and non-linear classifier using 10-fold nested cross-validation. As this
yields 10 individual scores, we can also perform a statistical test, which de-
termines whether the results are statistically significant (α = 0.05); for this,
we used the Wilcoxon signed rank test as recommended by Demšar [5], since
non-parametric tests do not depend on the assumption of normally-distributed
data. The data is pre-processed using imputation, one-hot-encoding, variance
threshold and feature scaling to unit variance. Of course, the values for these
operations are inferred on the training set and applied to the test set. All clas-
sifiers, as well as the random search module, are as implemented in Scikit-learn
version 0.19.1 [12]. Each algorithm had a maximum run time of 96 hours on a 20
core Intel Xeon E5-2630v4, i.e., a maximum of 1,920 CPU hours per run. Tasks
which ran out of time were not evaluated. Figure 1 shows boxplots of the ratio
of the run time for the linear and non-linear algorithms per dataset. The run
time was measured over the full random search procedure.

SV
M NN DT

10 1

100

101

102

ra
tio

 o
f r

un
tim

es

Fig. 1. Ratios of wall
clock run times. Ratios
larger than 1.0 indicate
that the linear model
needed less time.

Results The results are provided in an OpenML
study2, to which a Jupyter Notebook is attached. This
section summarizes the results as three case studies.
For each family of classifiers we present: (i) A table
with summarizing statistics, both on the OpenML100
and on the complete set. (ii) A scatter plot showing
for each dataset whether the linear or non-linear vari-
ant performed better, with the number of data points
and the number of features as axes. (iii) A figure plot-
ting the difference of mean predictive accuracy per
dataset. It sorts the datasets by difference in mean
accuracy scores. A positive difference indicates a bet-
ter performance of the linear model.

The results of the SVM case study are presented
in Table 2, Figure 2 and Figure 3; the results of the
neural network case study are presented in Table 3,
Figure 5 and Figure 4; finally, the results of the deci-
sion tree case study are presented in Table 4, Figure 6
and Figure 7.

Discussion Many of the results are as expected, which validates the experi-
mental setup. The absolute statistics tables (Tables 2, 3 and 4) and difference
plots (Figures 3, 4 and 7) show that the non-linear classifier performs better
more frequently than the linear one. Especially for decision trees this difference
is eminent, arguably because of the limited representation of the decision stump.
However, the linear classifier also sometimes performs better, and in many cases
there is no significant difference. Specifically, for all datasets, only in half the
cases SVMs yielded statistically significantly better results with the non-linear
kernel than with the linear one. However, we note that failure to detect a sig-
nificant difference does not imply that there is no such difference: our statistical

2 https://www.openml.org/s/123

https://www.openml.org/s/123


Support Vector Machine Case Study

Table 2. General Statistics on Performance

all datasets OpenML100 datasets
absolutely significantly absolutely significantly

result number % number % number % number %
linear better 121 41 14 5 19 20 2 2

equal / neither ... nor 19 6 218 74 6 6 44 46
non-linear better 154 52 62 21 70 74 49 52

294 100 294 100 95 100 95 100

Fig. 2. Scatterplot showing whether lin-
ear or non-linear performs statistically
better; each dot represents a dataset.

0 50 100 150 200 250
Dataset

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Di
ffe

re
nc

e 
of

 m
ea

n 
ac

cu
ra

cy
 sc

or
es

SVM

Fig. 3. Accuracy difference per dataset
between linear and non-linear. Positive
values indicate linear performed better.

tests are only based on 10 samples (one per cross-validation fold) and thus have
limited power; thus, our results should not be overinterpreted.

The scatter plots (Figure 2, 5 and 6) reveal general trends which classifier
performs better on datasets with specific characteristics. We plot this against the
number of data points and the number of features; the background color shows
which type of classifier is dominant in a region (based on a k-nearest-neighbour
model with k = 5). Note that the background coloring looks a bit peculiar
because it is determined in Euclidean space and represented in log space. Also
note that some datasets have similar dimensions, causing several dots to overlap.
For all classifier types the non-linear models are dominant in the regions with a
large number of data points. However, when applied to a data set with few data
points, the implementations of linear SVMs and neural networks we used do not
perform worse than their non-linear counter parts at a statistically significant
level. This result indicates that the optimal choice is not always clear-cut, and
in case of doubt it may be preferable to use the linear version (since it is less
likely to overfit, faster to run, and yields more interpretable results). We would
like to highlight that, based on our data, we can only draw conclusions based



Neural Network Case Study

Table 3. General Statistics on Performance

all datasets OpenML100 datasets
absolutely significantly absolutely significantly

result number % number % number % number %
linear better 75 32 4 2 11 16 2 3

equal / neither ... nor 13 6 181 78 5 7 30 45
non-linear better 143 62 46 20 51 76 35 52

231 100 231 100 67 100 67 100

Fig. 4. Scatterplot showing whether lin-
ear or non-linear performs statistically
better; each dot represents a dataset.

0 50 100 150 200
Dataset

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Di
ffe

re
nc

e 
of

 m
ea

n 
ac

cu
ra

cy
 sc

or
es

NN

Fig. 5. Accuracy difference per dataset
between linear and non-linear. Positive
values indicate linear performed better.

on the scikit-learn implementations and the datasets we used; it remains an
open question whether similar results would hold when using more advanced
regularization schemes for the non-linear classifiers and other real-world data
sets.

5 Learning when to use what classifier

In this section we present the results of an algorithm selection experiment. The
relevance is three-fold: (i) this experiment adds credibility to the analysis in
Section 4, by evaluating on a hidden test set (ii) this experiment is implicitly
a deeper variant of the analysis in Section 4, i.e., by looking at a larger set of
data characteristics, and (iii) the results of this experiment could be used to
automatically select between a linear and non-linear classifier.

Setup The algorithm selection framework [17] consists of the following compo-
nents: (i) a set of previously encountered datasets D, (ii) a set of data character-
istics F (also called meta-features), (iii) a set of algorithms A, and (iv) measured



Decision Tree Case Study

Table 4. General Statistics on Performance

all datasets OpenML100 datasets
absolutely significantly absolutely significantly

result number % number % number % number %
linear better 79 26 4 1 10 10 0 0

equal / neither ... nor 13 4 162 54 0 0 17 17
non-linear better 207 69 133 44 90 90 83 83

299 100 299 100 100 100 100 100

Fig. 6. Scatterplot showing whether lin-
ear or non-linear performs statistically
better; each dot represents a dataset.

0 50 100 150 200 250 300
Dataset

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Di
ffe

re
nc

e 
of

 m
ea

n 
ac

cu
ra

cy
 sc

or
es

DT

Fig. 7. Accuracy difference per dataset
between linear and non-linear. Positive
values indicate linear performed better.

performance p of the algorithms A on datasets D. For any new dataset D′ (not
in D) the task is to predict which algorithm from A maximizes performance
measure p. In our case, D is the set of datasets on which both versions of a clas-
sifier terminated, A is the linear and the non-linear classifier of a given type, F
is a set of meta-features selected from OpenML (which we define more precisely
shortly) and performance measure p is predictive accuracy. We train a random
forest (100 trees) on the set of meta-features to predict whether the optimized
linear classifier or optimized non-linear classifier will perform statistically better.
Cases where there is no statistical difference are assigned to the ‘prefer linear’
class. Hence, this is a binary decision problem.

Table 5 shows the sets of meta-features that we consider, per category. In
our experiment we consider the following subset of these: (i) simple, containing
just the features that can be computed in a single pass over the dataset, (ii) no
landmarkers, which contains meta-features from the categories simple, statisti-
cal and information theoretic, and (iii) all, containing all meta-features in this
table. Indeed, calculating meta-features comes at a certain cost and in particular
calculating the landmarkers might impose a high run time. However, note that



Table 5. Meta Features

Category Meta-features
Simple Number Of Features, Number Of Data Points, Dimensionality, Default Ac-

curacy, Number Of Data Points With Missing Values, Percentage Of Data
Points With Missing Values, Number Of Missing Values, Percentage Of Miss-
ing Values, Number Of Numeric Features, Percentage Of Numeric Features,
Number Of Symbolic Features, Percentage Of Symbolic Features, Number
Of Binary Features, Percentage Of Binary Features, Majority Class Size,
Majority Class Percentage, Minority Class Size, Minority Class Percentage,
Number Of Classes, Minority Majority Ratio

Statistical Mean Means Of Numeric Attributes, Mean Std Of Numeric Attributes, Mean
Kurtosis Of Numeric Attributes, Mean Skewness Of Numeric Attributes

Information Theoretic Class Entropy, Mean Attribute Entropy, Mean Mutual Information, Equiv-
alent Number Of Attributes, Mean Noise To Signal Ratio

Landmarkers Decision Stump Error Rate, Decision Stump Kappa, Decision Stump AUC,
Naive Bayes Error Rate, Naive Bayes Kappa, Naive Bayes AUC, 1-NN Er-
rRate, 1-NN Kappa, 1-NN NAUC

Table 6. Accuracy and AUROC scores for different sets of meta-features. The majority
class is the combined set of ‘linear statistically better’ and ‘no statistical difference’.
Results over all datasets.

classifier default simple no landmarkers all
family accuracy accuracy AUC accuracy AUC accuracy AUC
SVM 0.789 0.844 0.874 0.844 0.897 0.861 0.908
DT 0.555 0.839 0.895 0.826 0.902 0.856 0.913

ANN 0.801 0.857 0.846 0.870 0.827 0.861 0.852
Total dataset 0.708 0.803 0.837 0.801 0.836 0.805 0.841

Table 7. Accuracy and AUROC scores for different sets of meta-features. The majority
class is ‘non-linear statistically better’. Results over the OpenML 100.

classifier default simple no landmarkers all
family accuracy accuracy AUC accuracy AUC accuracy AUC
SVM 0.516 0.611 0.745 0.621 0.719 0.674 0.789
DT 0.830 0.840 0.869 0.840 0.795 0.870 0.883

ANN 0.522 0.657 0.716 0.642 0.677 0.672 0.715
Total dataset 0.637 0.740 0.798 0.756 0.796 0.760 0.804

the algorithms in A are both optimized using 250 iterations of random search,
and the landmarkers are (by design) ran with a given set of hyperparameters.
This justifies the use of applying landmarkers. We evaluate the meta-model in
a leave-one-out fashion, training the model on all but one dataset and test it on
this left-out dataset, in order to assess the performance of the meta-model.

Results Table 6 and Table 7 show the performance results of the meta-learning
experiment evaluated for all completed datasets and for the completed datasets
of the OpenML100 repository, respectively. As baseline the default accuracy
(obtained by always predicting the majority class) is listed for each subset. The
‘classifier family’ column shows which classifier type was used, the ‘default ac-
curacy’ column shows the default accuracy, and the other columns show the
accuracy and AUROC score of the meta-model for each set of meta-features.
The set of meta-features with the highest accuracy score is typeset in bold.

Both tables show a similar trend. In all cases, the meta-model performs con-
sistently better than the default accuracy. From this we conclude that the meta-



NumberOfDataPoints

MeanKurtosisOfNumericAtts

kNN1NKappa

MinorityMajorityRatio

kNN1NAUC

Dimensionality

NumberOfFeatures

MinorityClassSize

PercentageOfNumericFeatures

DecisionStumpKappa

MinorityClassPercentage

PercentageOfSymbolicFeatures

kNN1NErrRate

NaiveBayesAUC

NaiveBayesKappa

DecisionStumpErrRate

ClassEntropy

MeanMeansOfNumericAtts

NumberOfNumericFeatures

DecisionStumpAUC

MajorityClassSize

MeanMutualInformation

NumberOfClasses

MeanStdDevOfNumericAtts

DefaultAccuracy

PercentageOfBinaryFeatures

EquivalentNumberOfAtts

MeanNoiseToSignalRatio

MeanSkewnessOfNumericAtts

MajorityClassPercentage

NumberOfBinaryFeatures

PercentageOfMissingValues

NaiveBayesErrRate

NumberOfSymbolicFeatures

MeanAttributeEntropy

NumOfDataPointsWithMissVals

PercOfDataPointsWithMissVals

NumberOfMissingValues

0.00

0.05

0.10

0.15

0.20

M
ut

ua
l i

nf
or

m
at

io
n

SVM
ANN
DT
total

Fig. 8. Bar plot showing the mutual information for each meta feature. OpenML100
subset. Sorted by the mutual information values of the total dataset

features model something related to the linearity of the dataset. Interestingly,
the majority class is different between the two meta-datasets. When consider-
ing only the OpenML100, the majority class is ‘non-linear statistically better’;
contrarily, when considering all datasets, the majority class is the combined set
of ‘linear statistically better’ and ‘no statistical difference’. This is most likely
due to the slightly larger datasets in the OpenML100. The set of simple meta-
features already makes a decent improvement compared to the default accuracy.
Adding the set of statistical and information theoretic features adds only a lit-
tle predictive power (as shown in the column ‘no landmarkers’). Finally, adding
the landmarker features (and thus having most information) results consistently
in the highest accuracy. We analyze which features are most important for the
meta-model. Features that are important to the meta-model have the potential
to give more information about the linearity of a dataset and the dynamics be-
tween the linear and non-linear classifier. We use the mean mutual information
measure, as described in [20], because this is a uni-variate measure and prevents
biases incurred from correlations between features. The results are presented in
Figure 8. The features that we analyzed in Section 4 (number of data points
and number of features) appear to be quite important. Of the other features,
the nearest neighbour based landmarkers seem important.

6 Conclusion

Motivated by the interpretability of linear models (which is important in the
context of legal requirements explainability of automated decisions), as well as
secondary niceties of linear models (such as ease of use and computational effi-
ciency), this paper presented the results of a large scale experiment comparing
the performance of linear and non-linear classifiers. Our main focus was to build
large scale empirical support to determine the circumstances under which a given



type of classifier is better. We considered three classifier families: SVMs, neural
networks and decision trees, all as implemented in scikit-learn and represented
by a corresponding linear and non-linear model. Unsurprisingly, non-linear mod-
els of each classifier family achieved a better performance on more datasets than
their linear counterparts. However, for many datasets the performance difference
was not significant, a finding that is highly relevant for practical applications.
Meta-features related to dataset dimensionality (number of data points, num-
ber of features and the ratio of these) were the most relevant meta-features for
deciding whether to choose a linear or a non-linear model. As expected, non-
linear models typically exhibit a significantly better predictive performance if
the dataset at hand has a large number of data points and few features.

In order to make this experiment reproducible, all results are available on
OpenML and can be conveniently accessed through a Jupyter notebook. This
also makes it convenient to change the experimental parameters, such as the set
of datasets, displayed meta-features and optimization criterion, which all poten-
tially influence the results. Future work will focus on a better understanding
of the dynamics between meta-features and linearity of the dataset. One inter-
esting direction would be to search for meta-features that better distinguish the
datasets on which linear classifiers perform well. Furthermore, we would also like
to perform these analysis on different evaluation measures, such as Area under
the ROC Curve or F-measure. Having a publicly available meta-dataset enables
the community to actively participate in this process.

In summary, as our title states: don’t rule out simple models prematurely.

Acknowledgements This work has partly been supported by the European
Research Council (ERC) under the European Unions Horizon 2020 research and
innovation programme under grant no. 716721. The authors acknowledge sup-
port by the state of Baden-Württemberg through bwHPC and the German Re-
search Foundation (DFG) through grant no INST 39/963-1 FUGG.

References

1. Altman, E.I., Marco, G., Varetto, F.: Corporate distress diagnosis: Comparisons
using linear discriminant analysis and neural networks (the Italian experience).
Journal of Banking & Finance 18(3), 505–529 (1994)

2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal
of Machine Learning Research 13(Feb), 281–305 (2012)

3. Bischl, B., Casalicchio, G., Feurer, M., Hutter, F., Lang, M., Mantovani, R.G., van
Rijn, J.N., Vanschoren, J.: OpenML Benchmarking Suites and the OpenML100.
arXiv preprint arXiv:1708.03731 (2017)

4. Chu, C.W., Zhang, G.P.: A comparative study of linear and nonlinear models for
aggregate retail sales forecasting. International Journal of Production Economics
86(3), 217–231 (2003)

5. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7(Jan), 1–30 (2006)

6. Flach, P., Kull, M.: Precision-recall-gain curves: PR analysis done right. In: Ad-
vances in Neural Information Processing Systems. pp. 838–846 (2015)



7. Garrett, D., Peterson, D.A., Anderson, C.W., Thaut, M.H.: Comparison of linear,
nonlinear, and feature selection methods for EEG signal classification. IEEE Trans.
on Neural Systems and Rehabilitation Engineering 11(2), 141–144 (2003)

8. Gaudart, J., Giusiano, B., Huiart, L.: Comparison of the performance of multi-layer
perceptron and linear regression for epidemiological data. Computational Statistics
& Data Analysis 44(4), 547–570 (2004)

9. Goodman, B., Flaxman, S.: European Union regulations on algorithmic decision-
making and a “right to explanation”. ArXiv e-prints (Jun 2016)

10. Kaytez, F., Taplamacioglu, M.C., Cam, E., Hardalac, F.: Forecasting electric-
ity consumption: A comparison of regression analysis, neural networks and least
squares Support Vector Machines. International Journal of Electrical Power & En-
ergy Systems 67, 431–438 (2015)

11. Olier, I., Sadawi, N., Bickerton, G.R., Vanschoren, J., Grosan, C., Soldatova, L.,
King, R.D.: Meta-QSAR: a large-scale application of meta-learning to drug design
and discovery. Machine Learning pp. 1–27 (2018)

12. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

13. Pino-Mej́ıas, R., Pérez-Fargallo, A., Rubio-Bellido, C., Pulido-Arcas, J.A.: Com-
parison of linear regression and artificial neural networks models to predict heating
and cooling energy demand, energy consumption and CO2 emissions. Energy 118,
24–36 (2017)

14. Post, M.J., van der Putten, P., van Rijn, J.N.: Does feature selection improve
classification? A large scale experiment in OpenML. In: International Symposium
on Intelligent Data Analysis. pp. 158–170. Springer (2016)

15. van der Putten, P., van Someren, M.: A bias-variance analysis of a real world
learning problem: The CoIL Challenge 2000. Machine Learning 57(1), 177–195
(Oct 2004)

16. Rahimi, A., Recht, B.: Reflections on random kitchen sinks (2017)
17. Rice, J.R.: The Algorithm Selection Problem. Advances in Computers 15, 65118

(1976)
18. van Rijn, J.N.: Massively Collaborative Machine Learning. Ph.D. thesis, Leiden

University (2016)
19. van Rijn, J.N., Hutter, F.: Hyperparameter importance across datasets. In: Pro-

ceedings of the 24th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. pp. 2367–2376. ACM (2017)

20. Ross, B.C.: Mutual information between discrete and continuous data sets. PloS
one 9(2), e87357 (2014)

21. Schütze, H., Hull, D.A., Pedersen, J.O.: A comparison of classifiers and document
representations for the routing problem. In: Proceedings of the 18th annual In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval. pp. 229–237. ACM (1995)

22. Sculley, D., Snoek, J., Wiltschko, A., Rahimi, A.: Winner’s curse? On pace,
progress, and empirical rigor. In: Proc. of ICLR 2018 (2018)

23. Swanson, N.R., White, H.: A model selection approach to real-time macroeco-
nomic forecasting using linear models and artificial neural networks. The Review
of Economics and Statistics 79(4), 540–550 (1997)

24. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science
in machine learning. ACM SIGKDD Explorations Newsletter 15(2), 49–60 (2014)


	 Don't Rule Out Simple Models Prematurely: a Large Scale Benchmark Comparing Linear and Non-linear Classifiers in OpenML 

