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Abstract—Recently, AlphaZero has achieved outstanding per-
formance in playing Go, Chess, and Shogi. Players in AlphaZero
consist of a combination of Monte Carlo Tree Search and a
Deep Q-network, that is trained using self-play. The unified Deep
Q-network has a policy-head and a value-head. In AlphaZero,
during training, the optimization minimizes the sum of the policy
loss and the value loss. However, it is not clear if and under which
circumstances other formulations of the objective function are
better. Therefore, in this paper, we perform experiments with
combinations of these two optimization targets. Self-play is a
computationally intensive method. By using small games, we are
able to perform multiple test cases. We use a light-weight open
source reimplementation of AlphaZero on two different games.
We investigate optimizing the two targets independently, and also
try different combinations (sum and product).

Our results indicate that, at least for relatively simple games
such as 6x6 Othello and Connect Four, optimizing the sum,
as AlphaZero does, performs consistently worse than other
objectives, in particular by optimizing only the value loss.
Moreover, we find that care must be taken in computing the
playing strength. Tournament Elo ratings differ from training
Elo ratings—training Elo ratings, though cheap to compute and
frequently reported, can be misleading and may lead to bias.

It is currently not clear how these results transfer to more
complex games and if there is a phase transition between our
setting and the AlphaZero application to Go where the sum is
seemingly the better choice.

Index Terms—AlphaZero, Loss Optimization, Loss Combina-
tion, Elo Evaluation

I. INTRODUCTION

The AlphaGo series of papers [1]–[3] have sparked an
enormous interest of researchers and the general public alike
into deep reinforcement learning. AlphaGo Zero [2], the
successor of AlphaGo, even masters the game of Go without
human knowledge. It generates game playing data purely by
an elegant form of self-play, training a single unified neural
network with a policy head and a value head, in a Monte Carlo
Tree Search (MCTS) searcher. AlphaZero [3] uses a single
architecture for playing three different games (Go, Chess and
Shogi) without human knowledge. Many surveys, applications
and optimization methods [4]–[7] have been published and
transformed the research field into one of the most active of
current computer science.

Hui Wang acknowledges financial support from the China Scholarship
Council (CSC), CSC No.201706990015.

Despite the success of AlphaGo and related methods in
various application areas [8], [9], there are unexplored and
unsolved puzzles in the design and parameterization of the
algorithms. The neural network in AlphaZero is represented as
fθ = (pi, v) (a unified deep network with a policy head and a
value head). Policy pi is a probability distribution of choosing
the best move. A lower policy loss (loss pi) indicates a more
accurate selection of the best move. Value function v is the
prediction of the final outcome. A lower value loss (loss v)
indicates a more accurate prediction of the final outcome.
The use of a double-headed network by Alpha(Go) Zero is
innovative, and we know of no in-depth study of how the two
losses (loss pi and loss v) contribute to the playing strength
of the final player. In Alpha(Go) Zero the sum of the two losses
is used. Other studies based on the AlphaGo series algorithms
just use it that way. In order to increase our understanding of
the inner workings of the optimization of the double-headed
network we study different combinations of policy and value
loss in this paper. Therefore, in this work, we investigate:
a) what will happen if we only optimize a single target?
b) is a product combination a good alternative to summation?

We perform our experiments using a light-weight AlphaZero
implementation named AlphaZeroGeneral [10] and focus on
smaller games, namely 5×5 and 6×6 Othello [11], 5×5 and
6×6 Connect Four games [12]. The smaller size of these
games allows us to do more experiments, and they also provide
us largely uncharted territory where we hope to find effects
that cannot be seen in Go or Chess.

As performance measure we use the Elo rating. Elo can be
computed during training time of the self-play system, as a
running relative Elo. It can also be computed separately, in a
dedicated tournament between different trained players.

Our contributions can be summarized as follows:
1) In our smaller games, minimizing the value loss gives

consistently better results than the summation of the
value and the policy loss, contradicting both the default
setting of AlphaZeroGeneral and Alpha(Go) Zero, that
use the sum of the two losses.

2) In self-play training, it is easy to compute a running Elo
rating for the two players being trained. This relative
training Elo is misleading and can easily lead to wrong
conclusions. A (more expensive) full tournament Elo
rating should be used when comparing playing strengths.



The paper is structured as follows. Part II presents related
work. Part III presents games tested in the experiments. Part IV
introduces the AlphaZero algorithm (with important parame-
ters and default loss function) and Bayesian Elo system. Part V
sets up the experiments. Part VI presents the experimental
results. Part VII concludes the paper. Part VIII discusses
prospective directions for future work.

II. RELATED WORK

Deep reinforcement learning [13] is currently one of the
most active research areas in artificial intelligence, reaching
human level performance for difficult games such as Go [14],
which was almost unthinkable 10 years ago. Since Mnih et al.
reported human-level control for playing Atari 2600 games by
means of deep reinforcement learning [15] in 2015, the per-
formance of Deep Q-networks (DQN) improved dramatically.

We have also observed a shift in DQN from imitating and
learning from expert human players [1] to relying more on
self-play. This has been advocated in the area of reinforcement
learning [16]–[18] for quite some time already. Silver et
al. [2] turned to self-play to generate training data instead of
training from human data (AlphaGo Zero), which not only
saves a lot of work of collecting and labeling data from
human experts, but also shifts the constraining factor for
learning from available data to computing power, and achieves
a form of efficient curriculum learning [19]. This approach was
generalized to a framework (AlphaZero) that showed that the
same approach that worked in Go, also worked in Shogi and
Chess, demonstrating how to transfer the learning process to
other tasks [3].

Reinforcement learning is a very active field. We see a
move away from human data to self-play. After many years
of active research in MCTS [20], currently most research
effort is in improving DQN variants. AlphaGo is a complex
system with many tunable hyper-parameters. It is unclear if the
many choices concerning parameters and methods that have
been made in the AlphaGo series are close to optimal or if
the choices can be improved by, e.g., choosing a different
parameter set [21]. This includes the choice of optimization
tasks (loss functions) used for measuring training success.
Even if the choices were very good for Go and other complex
games, this does not necessarily transfer well to less complex
tasks.

III. TEST GAMES: OTHELLO/CONNECT FOUR

In our experiments, we use game Othello and Connect Four
on 5×5 and 6×6 board size respectively. Othello (also known
as Reversi) is a two-player game. Players take turns placing
their own color pieces. During a game, any opponent’s color
pieces that are in a straight line and bounded by the piece just
placed and another piece of the current player’s are flipped
to the current player’s color. While the last legal position is
filled, the player who has most pieces wins the game. Fig 1(a)
is the start configuration for 6×6 Othello. Connect Four is a
two-player connection game. Players take turns dropping their
own pieces from the top into a vertically suspended grid. The

pieces fall straight down and occupy the lowest position within
the column. The player who first forms a horizontal, vertical,
or diagonal line of four pieces wins the game. Fig 1(b) is a
game termination example for 6×6 Connect Four where the
red player wins the game.
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Fig. 1. Test Games Examples

There is a wealth of research on finding playing strategies
for these two games by means of different methods. For
example, De Jong et al. applied experience-based learning to
playing Othello [22]. Chong et al. described the evolution of
neural networks for learning to play Othello [23]. Edelkamp
et al. used Connect Four as a case study for state space
search [24]. Thill et al. applied temporal difference learning to
play Connect Four [25], and Banerjee et al. tested knowledge
transfer in General Game Playing on small games including
4×4 Othello [26]. Wang et al. assessed the potential of
classical Q-learning based on small games including 4×4
Connect Four [27]. Obviously, these two games are commonly
tested in game playing.

IV. ALPHAZERO

A. The Base Algorithm

According to [2], [3], the fundamental structure of Alp-
haZero algorithm is an iteration over three different stages
(see Algorithm 1).

The first stage is a self-play tournament. In the following
description the hyper-parameters are shown in italics. The
computer player performs several games against itself in
order to generate data for further training. In each step of a
game (episode), the player runs MCTS to obtain an enhanced
policy −→π based on the playing policy (

−→
pi) provided by the

current best neural network model (nnm). In MCTS, Cpuct
is used to balance exploration and exploitation of game tree
search. mctssimulation is the number of times to run down
from the root for building the game tree, where the nnm
provides the value (v) of the states for MCTS. For actual (self-
)play of the game, from tempThreshold steps on, the player
always chooses the best move according to −→π . Before that, up
to tempThreshold steps, the player always chooses a random
move based on the probability distribution from −→π . After
finishing the games, these new examples are normalized as
a form of (st,−→π t, zt) and appended to the queue (trainingEx-
amplesList). If the iteration count surpasses the retrainlength,
the first elements in the queue will be removed.

The second stage consists of neural network training, us-
ing data from self-play tournament. During training, there are



Algorithm 1 AlphaZero Algorithm
1: function ALPHAZERO(initial neural network model: nnm, parameter

setting: ps)
2: while current iteration<ps.iteration do . stage 1
3: while current episode<ps.episode do
4: while !game terminates do
5: −→π ← MCTS(nnm, ps.Cpuct, ps.mctssimulation, s);
6: if current game step<ps.tempThreshold then
7: action∼ −→π ;
8: else
9: action← argmaxa

−→π ;
10: trainingExamplesList← append examples;
11: if iteration of trainingExamplesList>ps.retrainlength then
12: trainingExamplesList.pop(0);
13: while current epoch<ps.epoch do . stage 2
14: batch← trainingExamples.size/ps.batchsize;
15: while current batch<batch do
16: loss pi, loss v, nnnw← trainNNT( ps.learningrate,

ps.dropout, training examples of current batch) by optimizing the loss
function;

17: while current arenacompare<ps.arenacompare do . stage 3
18: while !game terminates do
19: if player==player1 then
20: −→π1 ← MCTS(nnnm, ps.Cpuct, ps.mctssimulation, s);
21: action← argmaxa

−→π1;
22: else
23: −→π2 ← MCTS(pnnm, ps.Cpuct, ps.mctssimulation, s);
24: action← argmaxa

−→π2;
25: if player1.win/ps.arenacompare≥ps.updateThreshold then
26: nnm←nnnm;
27: return nnm;

several epochs. In each epoch, training examples are divided
into several small batches [28] according to the specific batch-
size. The neural network is trained to optimize (minimize) [29]
the value of the loss function which (see Part IV-B) sums up
the mean-squared error between predicted outcome and real
outcome and the cross-entropy losses between

−→
pi and −→π with

a learningrate and dropout1.
The last stage is arena comparison2, which is comparing

the newly trained neural network model with the previous
neural network model. The player will adopt the better model
for the next iteration. In order to achieve this, the newly
trained neural network (nnnw) and the previous best neural
network (pnnw) are compared by playing against each other
for arenacompare games. If the nnnw wins more than a
fraction of updateThreshold games, it is replacing the previous
best pnnw. Otherwise, the nnnw is rejected and the pnnw is
kept as current best model. In order to present this process
intuitively, we present all 12 parameters in their corresponding
positions in the pseudo code (Algorithm 1).

B. Loss Function

The training loss function consists of loss pi and loss v.
The neural network fθ is parameterized by θ. fθ takes the
game board state s as input, and provides the value vθ ∈
[−1, 1] of s and a policy probability distribution vector

−→
pi

1dropout is used as probability to randomly ignore some nodes of the hidden
layer. This mechanism is used to reduce overfitting [30].

2Note that compared with AlphaGo Zero, AlphaZero does not entail the
arena comparison stage anymore. However, we keep this stage for making
sure that we can safely recognize improvements.

over all legal actions as outputs.
−→
piθ is the policy provided

by fθ to guide MCTS for playing games. After performing
MCTS, we obtain an improvement estimate −→π . It is an aim
of the training to make −→π more similar to

−→
pi . This can be

achieved by optimizing the cross entropy of two distributions.
Therefore, the loss pi can be defined as −−→π log(

−→
piθ(st)).

The other aim is to minimize the difference between the
output value (vθ(st)) of the s according to fθ and the real
outcome (zt ∈ {−1, 1}) of the game. Therefore, loss v can be
defined as (vθ(st)−zt)2. Summarizing, the total loss function
of AlphaZero can be defined as Equation 1.

loss pi+ loss v = −−→π log(
−→
piθ(st)) + (vθ(st)− zt)2 (1)

C. Bayesian Elo System

The Elo rating function has been developed as a method
for calculating the relative skill levels of players in games [31].
Usually, in zero-sum games, there are two players, player A
and B. If player A has an Elo rating of RA and B has an Elo
rating of RB , then the expectation of that player A wins the
next game can be calculated by EA = 1

1+10(RB−RA)/400 . If the
real outcome of the next game is SA, then the updated Elo rat-
ing of player A can be calculated by RA = RA+K(SA−EA),
where K is the factor of the maximum possible adjustment per
game. In practice, K should be set as a bigger value for weaker
players but a smaller value for stronger players. Following [3],
in our design, we adopt the Bayesian Elo system [32] to show
the improvement curve of the learning player during the whole
training process. We furthermore also employ this method to
assess the playing strength of the final models.

V. EXPERIMENTAL SETUP

Our experiments are performed on a GPU server with
128G RAM, 3TB local storage, 20 Intel Xeon E5-2650v3
CPUs (2.30GHz, 40 threads), 2 NVIDIA Titanium GPUs (each
with 12GB memory) and 6 NVIDIA GTX 980 Ti GPUs (each
with 6GB memory). On these GPUs, every algorithm training
run takes several days.

A. Parameter Values

In this work, all neural network models share the same
structure, which consists of 4 convolutional neural networks
and 2 fully connected layers [10]. The parameter values for
Algorithm 1 used in our experiments are given in Table I. The
values are based on work reported in [21].

B. Optimization Targets

As we want to assess the effect of optimizing different loss
functions, we employ a weighted sum loss function based on
Equation 1:

λ(−−→π log(
−→
piθ(st))) + (1− λ)(vθ(st)− zt)2 (2)

where λ is a weight parameter. This provides some flexi-
bility to gradually change the nature of the function. In our
experiments, we first set λ=0 and λ=1 in order to assess the
two targets independently. Then we fix λ at 0.5, resulting in the



TABLE I
DEFAULT PARAMETER SETTING

Parameter Default Value
iteration 200
episode 50
tempThreshold 15
mctssimulation 100
Cpuct 1.0
retrainlength 20
epoch 10
batchsize 64
learningrate 0.005
dropout 0.3
arenacompare 40
updateThreshold 0.6

equivalent of Equation 1. Furthermore, we employ a product
combination loss function as follows:

−−→π log(
−→
piθ(st))× (vθ(st)− zt)2 (3)

For all experiments, each setting is run 8 times to get statisti-
cally significant results (with error bars) using the parameters
of Table I as default values. However, in order to save training

time, we reduce the iteration number to 100 in the larger
games ( 6×6 Othello and 6×6 Connect Four).

C. Measurements

The chosen loss function is used to guide each training
process, with the expectation that smaller loss is supposed to
mean a stronger model. However, in practise, we have found
that this is not always the case and another measure is needed
to check. Therefore, following Deep Mind’s work, we also
employ Bayesian Elo ratings to describe the playing strength
of the model in every iteration. In addition, for each game,
we use all best players trained from the four different targets
(2 single losses, sum, and product) and 8 repetitions plus a
random player to play the game with each other for 20 times.
From this, we calculate the Elo ratings of these 33 players
to show the real playing strength of a player, rather than the
playing strength only based on its own whole training history.

VI. EXPERIMENT RESULTS

In the following, we present the experimental results from 3
aspects according to the measurements introduced above (i.e.
training loss, the whole history training Elo rating and the
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Fig. 2. Training losses for optimizing different targets in 5×5 Othello, averaged from 8 runs. All measured losses are shown, but only one of these is
optimized for. Except for the sum, the target that is optimized for is also the lowest



tournament Elo rating of the final best player3). Error bars
indicate standard deviation of the 8 runs.

A. Training Loss

We first show the training losses in every iteration during
the training phase, with different loss measures, but only one
optimization task per diagram, which means we need four of
these per game. This means that we can see what optimizing
for a specific target actually means for the other loss types.

For 5×5 Othello, from Fig 2(a), we find that by only
optimizing loss pi, loss pi is significantly minimized to about
0.6 at the end of each training, where loss v is minimized to
a level at 1.0 after 10 iterations. From Fig 2(b), the results
show that when only optimizing loss v, loss v is minimized
from more than 0.5 to about 0.2 the end of each training,
where loss pi is minimized from more than 3.5 to about 3.3.
In Fig 2(c), we see that when the sum of loss pi and loss v is
optimized, both losses are reduced significantly. The loss pi
decreases from about 1.2 to 0.5, loss v surprisingly decreases
to 0. Fig 2(d), it is similar to Fig 2(c), while the product of
loss pi and loss v is optimized, the loss pi and loss v are
both reduced as well. The loss pi decreases to 0.5, the loss v
also surprisingly decreases to about 0.
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Fig. 3. Training losses for optimizing different targets in 6×6 Othello,
averaged from 8 runs. All measured losses are shown, but only one of these is
optimized for (similar to the smaller Othello game in Fig 2). Note the different
scaling for subfigure (b). Except for sum, the target that is optimized for is
the lowest

For the larger 6×6 Othello, we find that when only optimiz-
ing loss pi, loss pi is significantly minimized to about 0.75
at the end of each training, where loss v is minimized to a
level at 1.05 after about 10 iterations (Fig 3(a)). For optimizing
loss v (Fig 3(b)), the results show that loss v is reduced from

3Source code of measuring loss, training Elo rating and tournament Elo
rating is released on github: https://github.com/wh1992v/lossfunctionfora0g

more than 0.5 to about 0.25 at the end of each training, but
loss pi seems to stay at the similar level. For optimizing the
sum (Fig 3(c)), we find in contrast to 5×5 Othello that loss pi
decreases from about 1.1 to 0.4, whereas loss v increases
slightly from about 0.2 and then decreases to about 0.2 again.
We also find a similar behavior of loss v when optimizing
the product of losses (Fig 3(d)), with the difference that the
final computed loss is much lower as the values are usually
smaller than one. However, the similarity of the single losses
is striking.
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Fig. 4. Training losses for optimizing the four different targets in 5×5
Connect Four, aggregated from 8 runs. Loss v is always the lowest

For 5×5 Connect Four (displayed in Fig 4(a)), we find that
when only optimizing loss pi, it is significantly minimized
from 1.4 to about 0.6 at the end of each training, whereas
loss v is minimized much quicker from 1.0 to about 0.2, where
it is almost stationary. Optimizing loss v (Fig 4(b)) leads to
some reduction from more than 0.5 to about 0.15, but loss pi
is not moving much after an initial slight decrease to about 1.6.
For minimizing the sum (Fig 4(c)) and the product (Fig 4(d)),
the behavior of loss pi and loss v is very similar, they both
decrease steadily, until loss v surprisingly reaches 0. Of course
the sum and the product arrive at different values, but in terms
of both loss pi and loss v they are not different.

The training process of the larger 6×6 Connect Four is
investigated in Fig 5(a). We find that optimizing loss pi
reduces it significantly from 1.7 to about 0.7 at the end of
each training, where loss v is minimized from 1.2 to about
0.4. For the scenario with optimizing loss v (Fig 5(b)), we
find a similar behavior than for the smaller Connect Four.
After some initial progress, there is only stagnation. Again, for
optimizing the sum and the product, the target value changes,
but the single loss values loss pi and loss v behave similarly
(Figs 5(c) and 5(d)). Thus we see that both targets lead to very
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Fig. 5. Training losses for optimizing different targets in 6×6 Connect Four,
averaged from 8 Runs. Loss v is the lowest except for the product target

similar training processes.

B. Whole History Training Elo Rating

Following the AlphaGo series papers, we also investigate
the whole history training Elo rating of every iteration during
the training. However, these papers present results of a single
training run, whereas we provide means and variances for 8
runs for each targets, categorized by different games in Fig 6.
We display the Elo progression obtained from the different
optimization targets for one game together. However, one shall
be aware that their numbers are not directly comparable as they
stem from players who have never seen each other. Neverthe-
less, the trends are important, and it is especially interesting
to see if the Elo values correlate with the progression of the
losses.

From Fig 6(a) (small 5×5 Othello) we see that for all
optimization tasks, Elo values steadily improve, while they
raise fastest for loss pi. In Fig 6(b), we find that for the
bigger 6×6 Othello version, Elo values also always improve,
but much faster for the sum and product target, compared to
the single loss targets.

Figures 6(c) and 6(d) show the Elo rate progression for
training players with the four different targets on the small and
larger Connect Four setting. This looks a bit different from the
Othello results, as we find stagnation (for 6×6 Connect Four)
as well as even degeneration (for 5×5 Connect Four). The
latter actually means that for decreasing loss in the training
phase, we achieve decreasing Elo rates, such that the players
get weaker and not stronger. In the larger Connect Four setting,
we still have a clear improvement, especially if we optimize
for loss v. Optimizing for loss pi leads to stagnation quickly,
or at least a very slow improvement.
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(c) 5×5 Connect Four
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(d) 6×6 Connect Four

Fig. 6. The whole history Elo rating at each iteration during training for
different games, aggregated from 8 runs. The training Elo for sum and product
in panel b and c shows inconsistent results

Overall, we can conclude that the whole history Elo rating is
certainly good for assessing if training actually works, whereas
the losses alone do not always show that. We may even
experience contradicting outcomes as stagnating losses and
rising Elo rates (for the big Othello setting and loss v) or com-
pletely counterintuitive results as for the small Connect Four
setting where Elo rates and losses are partly anti-correlated.
We seemingly have experimental evidence for the fact that
training losses and Elo rates are by no means exchangeable as
they can provide very different impressions of what is actually
happening.

C. The Final Best Player Elo Rating

In order to measure which target can achieve better playing
strength, we take all the final models trained from 8 runs and
4 targets plus a random player to pit against each other for 20
times in a full round robin tournament. This enables a direct
comparison of the final outcomes of the different training pro-
cesses with different targets. It is thus more informative than
the whole history training Elo, but provides no information
during the training process. In principle, we could of course
do that also during the training at certain iterations, but this
is a computationally very expensive process that would slow
down learning a lot.

The results are presented in Fig 7. and show that optimizing
loss v achieves the highest Elo rating with small variance
for 6×6 Othello, 5×5 Connect Four and 6×6 Connect Four.
For 5×5 Othello, with 200 training iterations, the difference
between the results is small. We therefore presume that opti-
mizing loss v is the best choice for the games we focus on.
This is somewhat surprising because we expected the sum to
perform best as documented in the literature. However, it may
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Fig. 7. Round-robin tournament of all final models from optimizing different targets in different games over 8 runs. For each game we run the 8 final models
from the 4 different optimization targets plus a random player (i.e. 33 players in total) against each other. In panel (a) the difference is small. In panel b, c,
and d, the Elo rating of loss v optimized players clearly dominates.

be the case that this applies to smaller games only, and 5×5
Othello already seems to be a border case where overfitting
levels out all differences.

In conclusion, we find that optimizing for the loss v func-
tion only is an alternative to the sum target for certain cases.
We also report exceptions, especially in relation to the Elo
rating as calculated during training. The relation between
Elo and loss during training is sometimes inconsistent (5×5
Connect Four training shows Elo decreasing while the losses
are actually minimized). A combination achieves lowest loss,
but loss v achieves the highest Elo. If we optimize the
combination, optimizing the product can result to a higher
Elo rating model in these games.

VII. CONCLUSION

Most function approximators in supervised learning and
reinforcement learning use a single neural network with a
single input and output. In reinforcement learning, the network
either is a policy network, or a value network. Alpha(Go)
Zero introduces the innovation of optimizing for both policy
and value, using a single unified network, with two heads, a
policy head and a value head. Alpha(Go) Zero and other works
optimize this network using an unweighted sum of policy loss
and value loss. In this paper, we study four different loss

function combinations: (1) loss pi, (2) loss v, (3) loss pi +
loss v, (4) loss pi× loss v. We use the open source AlphaZe-
roGeneral system for light-weight self-play experiments, using
two small games, Connect Four and Othello. Surprisingly, for
our games, we find that loss v achieves the highest tournament
Elo rating, in contrast to what AlphaZero uses and in contrast
to the defaults of AlphaZeroGeneral, showing that default
hyper-parameter settings may be non-optimal, especially for
the smaller games we investigate here.

During training, we compute a running Elo rating. We find
that the training losses trend and the Elo ratings trend are
inconsistent in some games (5×5 Connect Four and 6×6
Othello). Training Elo, while cheap to compute, can be a
misleading indicator of playing strength, influenced by training
bias. Our results provide the methodological contribution that
for comparing playing strength, tournament Elo rating should
be used, instead of running training Elo.

VIII. OUTLOOK

The running training Elo is computed based on the two
active players in the self-play training. We find that tournament
results, that are computed using many more diverse players,
are more reliable. The narrow basis may be more susceptible



to bias, and a broader basis during training may be able to
improve training results.

The self-play results by Alpha(Go) Zero are very impres-
sive. However, self-play training uses huge computational
resources. We used small games in order be able to run many
variations and experiments in a reasonable time (weeks), and
in order to be able to do the kind of loss function experimen-
tation that we wanted to do. Self-play research will benefit
greatly from efficiency improvements and further development
of (open source) systems such as AlphaZeroGeneral.

For future work, scaling studies between large and small
games are interesting. Furthermore, the weight value λ in
Equation 2 should be further optimized. It remains an open
question whether the sum function needs to be revised also
for games on larger game boards. Moreover, based on the
findings of this paper, we encourage a deeper analysis of Elo
rating based performance analysis with the goal to obtain more
objective scoring methods.
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