
Genetic Programming for Data Classification:
Partitioning the Search Space

Jeroen Eggermont
Leiden Institute of Advanced

Computer Science,
Universiteit Leiden

P.O. Box 9512
Leiden, The Netherlands

jeggermo@liacs.nl

Joost N. Kok
Leiden Institute of Advanced

Computer Science,
Universiteit Leiden

P.O. Box 9512
Leiden, The Netherlands

joost@liacs.nl

Walter A. Kosters
Leiden Institute of Advanced

Computer Science,
Universiteit Leiden

P.O. Box 9512
Leiden, The Netherlands

kosters@liacs.nl

ABSTRACT
When Genetic Programming is used to evolve decision trees
for data classification, search spaces tend to become ex-
tremely large. We present several methods using techniques
from the field of machine learning to refine and thereby re-
duce the search space sizes for decision tree evolvers. We
will show that these refinement methods improve the classi-
fication performance of our algorithms.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Systems Ap-
plications — Information Search and Retrieval ;
I.2.8 [Computing Methodologies]: Artificial Intelligence
— Problem Solving, Control Methods, and Search

Keywords
Genetic Programming, Data Classification

1. INTRODUCTION
Decision tree constructing algorithms for data classifica-

tion such as ID3 [12] and C4.5 [11] are based on a common
principle: divide and conquer. The algorithms attempt to di-
vide a training-set T into multiple (disjoint) subsets so that
each subset Ti belongs to a single target class. In its simplest
form a training-set consisting of N records could be divided
into N subsets {T1, . . . , TN} such that each subset is asso-
ciated with a single record and target class. However, the
predictive capabilities of such a classifier would be limited.
Therefore algorithms like C4.5 try to construct more gen-
eral decision trees by partitioning the domain of numerical
attributes and thereby limiting the size of the constructed
decision tree. Since finding the smallest decision tree consis-
tent with a specific training-set is NP-complete [6], machine

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

SAC’04, March 14–17, 2004, Nicosia, Cyprus
c©2004 ACM 1-58113-812-1/03/04. . .$5.00

learning algorithms for constructing decision trees tend to
be non-backtracking and greedy in nature.

Unlike the divide and conquer approach of machine learn-
ing algorithms, evolutionary algorithms do not directly con-
struct a solution to a problem (e.g., a decision tree) but
rather search for a solution in a space of possible solutions.
The space in which such an evolutionary algorithm searches
is usually very large and sometimes even infinite (at least
theoretically). In this paper we continue the research started
in [4] and show how the search space in which a tree-based
Genetic Programming (gp) [1, 8] algorithm searches can be
reduced by partitioning the domain of numerical valued at-
tributes in a data set. By partitioning (or clustering) the nu-
merical valued attributes the gp algorithm can concentrate
on finding the right combination of attributes and decision
tree shape. As we will demonstrate on a selection of classi-
fication problems this hybrid approach greatly increases the
classification performance of our gp algorithms.

Note that, whereas greedy algorithms like C4.5 are aimed
at locally optimizing a decision tree during construction,
our gp algorithms perform a more global search through
the space of possible trees. As a result our gp algorithms
search in a substantially larger part of the search space.

The outline of this paper is as follows. We start by describ-
ing the decision tree format that we will be using. Next we
define three decision tree representations by specifying the
set of possible internal and external nodes that can occur
in our trees. We then describe our experiments and results.
Finally, in the last section we draw some conclusions and
look at future research.

2. FULL ATOMIC REPRESENTATIONS
In this paper we use full atomic representations. A full

atomic representation uses atoms in the internal and leaf
nodes. Each atom is syntactically a predicate of the form
(attribute operator value(s)), where operator is a function
returning a Boolean value (e.g., < or =). In the leaf nodes we
have class assignment atoms of the form (class := C), where
C is a category selected from the domain of the attribute to
be predicted. A small example tree is shown in Figure 1.
A full atomic tree classifies an instance I by traversing the
tree from root to leaf node. In each non-leaf node an atom is
evaluated. If the result is true the right branch is traversed,
else the left branch is taken. This process is repeated until
a leaf node containing a class assignment node is reached,

1

0

$ class := A$

$ class := B$$ class := A$

0

1

LENGTH = 175

AGE < 27

Figure 1: An example of a full atomic tree

resulting in the classification of the instance.

Multi-layered Fitness
In order to evolve trees which can be easily understood by
humans, it is important to limit their size. We do this by
pruning decision trees that become too large in combina-
tion with a multi-layered fitness. A multi-layered fitness is
a fitness which consists of several fitness measures or objec-
tives which are ranked according to their importance. Here
we use a multi-layered fitness consisting of two fitness mea-
sures that we want to minimize. The primary, and most
important, fitness measure is the misclassification percent-
age. The secondary fitness measure is the number of tree
nodes. When the fitness of two individuals is to be com-
pared we first look at the primary fitness. If both individ-
uals have the same misclassification percentage we compare
the secondary fitness measures.

2.1 A Simple Representation
By using a full atomic representation we have defined the

basic shape of our decision trees. We can define the precise
decision tree representation by specifying what atoms are
to be used. The first representation is a simple, but power-
ful, decision tree representation that uses different types of
atoms based on the data type of an atom’s attribute. For
non-numerical attributes we use atoms of the form (variablei

= value) for each possible attribute-value combination found
in the data set. For numerical attributes we define the less-
than operator (<). Again we use atoms for each possible
attribute-value combination found in the data set. The idea
in this approach is to give the gp algorithm the most flexibil-
ity and let it decide on the best attribute-value combination
at a given point in a tree.

2.2 Refined Representations
One of the drawbacks of the simple representation is the

fact that it creates a possible internal node for each attribute-
value combination that occurs in the data set. As a result
the search space sizes become so large that it becomes diffi-
cult for the simple gp algorithm to achieve a decent classifi-
cation performance. To reduce the huge number of possible
internal nodes that are generated in this way, and thereby
the search spaces, we will use ideas from machine learning.
In C4.5 a single threshold value is selected to split the do-
main of a numerical valued attribute into two. Since C4.5
is a greedy non-backtracking algorithm it uses either the
gain or gain ratio criterion [11] to locally select the optimal
threshold value for each node.

In our refined representations we also use the gain and
gain ratio criteria to split the domain of a numerical valued
attribute into partitions. However, unlike C4.5, we deter-
mine k − 1 threshold values resulting in k partitions. The
gain ratio criterion should be especially useful as it was de-
signed to find a balance between information gained by split-
ting a data set into a large number of data subsets and lim-
iting the number of subsets. Another difference with C4.5 is
that we determine the set of optimal threshold values only
once, based on the entire training-set, rather than for each
node separately. By determining a “global” set of threshold
values for each numerical valued attribute we hope to find
more general trees and prevent over-fitting.

We will limit the maximum number of partitions to 5. If
two sets of threshold values have the same gain or gain ratio
measures we will choose the set of threshold values contain-
ing the least values. In order to use the partitions specified
by the optimal set of threshold values we need new types
of atoms. If the optimal set of threshold values consists for
instance of the three threshold values threshold1, threshold2

and threshold3 we could construct atoms of the form

• (attribute < threshold1),

• (attribute ∈ [threshold1, threshold2)),

• (attribute ∈ [threshold2, threshold3)), and

• (attribute ≥ threshold3).

2.3 Clustering Representation
A different method to partition the domain of numerical

valued attributes is clustering. Clustering algorithms group
similar collections of data together based on a measure of
similarity. Unlike the partitioning methods described in Sec-
tion 2.2, unsupervised clustering algorithms do not use the
target class but rather divide the instances into “natural”
groups. For our purposes we limit the clustering process
to partitioning the domain of a single numerical valued at-
tribute rather than clustering entire instances in the data
set. Although we could use some kind of evolutionary algo-
rithm for clustering, we use a K-means clustering algorithm
[13] since it is fast and deterministic. More information
about the clustering representation can be found in [3].

After the clustering algorithm has determined the clusters
we can construct atoms based on the minimum and maxi-
mum value of each cluster. Thus, if the K-means clustering
algorithm has found three clusters we could construct the
following atoms:

• (attribute ∈ [min1,max1]),

• (attribute ∈ [min2,max2]), and

• (attribute ∈ [min3,max3]),

where mini and max i are the minimum and maximum value
of cluster i respectively.

2.4 Example
Consider the simple example data set in Table 1. In the

case of the simple representation we get the following atoms:

• Since attribute A has six possible values {1,2,3,4,5,6}
and is numerical valued we use the < operator: (A <
1), (A < 2), (A < 3), (A < 4), (A < 5) and (A < 6).

Table 1: Example data set
A B class
1 a yes
2 b yes
3 a no
4 b no
5 a yes
6 b yes

Table 2: The data sets used in the experiments
data set records attributes classes
Australian credit (statlog) 690 14 2
German credit (statlog) 1000 23 2
Pima Indians diabetes 768 8 2
Heart disease (statlog) 270 13 2
Ionosphere 351 34 2
Iris 150 4 3

• Attribute B is non-numerical and thus we use the =
operator: (B = a) and (B = b).

• Finally for the target class we have two terminal nodes:
(class := yes) and (class := no).

In the case of our refined representations we get two thresh-
old values (3 and 5), using either the gain or gain ratio crite-
rion. Only two threshold values are chosen since they result
in a “perfect” partitioning of attribute A’s domain, giving
atoms: (A < 3), (A ∈ [3, 5)), and (A ≥ 5).

Using our K-means clustering algorithm with k = 3 re-
sults in three clusters for attribute A: [1, 2], [3, 4] and [5, 6],
respectively. Thus, in this case the following atoms are con-
structed: (A ∈ [1, 2]), (A ∈ [3, 4]), and (A ∈ [5, 6]).

3. EXPERIMENTS AND RESULTS
We will compare our gp algorithms to C4.5 and a number

of other evolutionary approaches using data sets from the
uci machine learning data set repository [2]. An overview
of the data sets used is given in Table 2.

A single gp implementation was used for both simple and
refined representations. It was programmed using the Evolv-
ing Objects library (EOlib) [7]. EOlib is an Open Source
C++ library for all forms of evolutionary computation and
is available from http://eodev.sourceforge.net.

In our gp system we use the standard gp mutation and
recombination operators for trees. The mutation operator
replaces a subtree with a randomly created subtree and the
crossover operator exchanges subtrees between two individ-
uals. Both the mutation rate and crossover rate are set to
0.9. The population was initialized using the ramped half-
and-half initialization [1, 8] method to create a combination
of full and non-full trees with a maximum tree depth of 6.
We used a generational model (comma strategy) with popu-
lation size of 100, an offspring size of 200 and a maximum of
99 generations. Parents were chosen by using 5-tournament
selection. We did not use elitism as the best individual was
stored outside the population. Each newly created individ-
ual, whether through initialization or recombination, was
automatically pruned to a maximum number of 63 nodes.

Each algorithm is evaluated using a 10-fold cross-validation
and the performance is the average misclassification error

Table 3: Australian credit data set results.
algorithm k average s.d. best worst rank
clustering gp 2 13.7 0.8 12.5 14.8 1
clustering gp 3 14.8 0.7 13.8 16.1 3
clustering gp 4 14.8 0.4 14.3 15.7 4
clustering gp 5 15.2 0.7 13.5 15.8 8
refined gp (gain) 2 14.2 0.4 13.5 14.9 2
refined gp (gain) 3 15.1 0.8 14.9 16.4 7
refined gp (gain) 4 14.9 0.9 13.3 16.5 5
refined gp (gain) 5 15.1 0.6 13.9 16.4 6
refined gp (gain ratio) 2 15.7 0.4 14.9 16.4 12
refined gp (gain ratio) 3 15.5 0.1 15.4 15.7 9
refined gp (gain ratio) 4 15.5 0.3 15.1 15.9 10
refined gp (gain ratio) 5 15.6 0.4 15.1 16.1 11
simple gp 22.0 3.0 17.0 25.7 14
C4.5 ∗ 15.9 13
Bagged C4.5 N/A
Boosted C4.5 N/A
cefr-miner N/A
esia 19.4 0.1 15

over 10 folds. In 10-fold cross-validation the total data set
is divided into 10 parts. Each part is chosen once as the test
set while the other 9 parts form the training set.

In order to compare our results to other evolutionary tech-
niques we will also mention the results of two other evolu-
tionary classification systems, cefr-miner [10] and esia [9],
as reported in these respective papers. cefr-miner is a gp
system for finding fuzzy decision trees and esia builds crisp
decision trees using a genetic algorithm. Both algorithms
also used a 10-fold cross-validation. To compare our results
to non-evolutionary decision tree algorithms, we will also
report the results of C4.5 and its Bagged and Boosted ver-
sions from [5]. We performed 10 independent runs for our
gp algorithms to obtain the results. When available from
the literature the results of cefr-miner, esia and C4.5 are
reported. For three data sets no results were reported for
C4.5 and its Bagged and Boosted versions. In those three
instances, marked with a ∗, we applied C4.5 to the data
set ourselves. N/A indicates that no results were available.
Since C4.5 is a deterministic algorithm the standard devi-
ation (s.d.), best and worst performance are not reported.
The tables with results also contain an extra column, labeled
k, to indicate the number of clusters in the case of our clus-
tering gp algorithms or the maximum number of partitions
in the case of the refined gp algorithms. The best (average)
result for each data set is printed in bold font.

The Australian Credit Data Set
The results on the Australian credit data set are displayed
in Table 3. The best classification performance is offered by
our clustering gp algorithm with 2 clusters per numerical
valued attribute. The second best performance is achieved
by our refined gp algorithm using the gain criterion with
2 partitions per numerical valued attribute. An inspection
of the atoms of the two algorithms shows that for most at-
tributes the partitions and clusters are different. In this case
the atoms created through clustering are clearly better. The
classification performance of the refined gp algorithms us-
ing the gain ratio criterion is not very good, but still better
on average than C4.5 or our simple gp. A positive aspect
of the refined gp algorithms using the gain ratio criterion is
that the standard deviations are lower than for our other
algorithms.

Table 4: German credit data set results
algorithm k average s.d. best worst rank
clustering gp 2 27.8 0.7 26.3 28.8 4
clustering gp 3 28.0 0.8 27.0 29.8 6
clustering gp 4 27.9 0.9 26.7 29.4 5
clustering gp 5 28.4 0.8 26.9 29.5 11
refined gp (gain) 2 28.1 0.8 26.9 29.9 7
refined gp (gain) 3 27.1 0.8 26.2 29.0 2
refined gp (gain) 4 28.3 0.7 26.9 29.3 9
refined gp (gain) 5 28.2 0.6 27.1 29.3 8
refined gp (gain ratio) 2 28.3 0.5 27.5 29.0 10
refined gp (gain ratio) 3 28.5 0.6 27.9 29.5 12
refined gp (gain ratio) 4 28.6 0.5 27.6 29.3 14
refined gp (gain ratio) 5 28.5 0.5 27.8 29.3 13
simple gp 27.1 0.7 24.3 28.5 1
C4.5 ∗ 27.2 3
Bagged C4.5 N/A
Boosted C4.5 N/A
cefr-miner N/A
esia 29.5 0.2 15

The German Credit Data Set
In Table 4 we see that only one of our gp algorithms can
beat C4.5 and perform almost as well as our simple gp al-
gorithm. Apparently, it is very difficult to correctly cluster
or partition the domain of the numerical valued attributes
of this data set. One reason for the relatively good perfor-
mance of our simple gp algorithm on this data set might be
the relatively small number of possible internal nodes when
compared to Australian credit data set. The results of our
refined gp algorithm using the gain ratio criterion are again
worse than those of our clustering and other refined gp al-
gorithms.

The Pima Indians Diabetes Data Set
On the Pima Indians diabetes data set (see Table 5) the
refined gp algorithms using the gain criterion are again bet-
ter than those using the gain ratio criterion. If we compare
the results of our clustering gp algorithm with the results
of our refined gp algorithms using the gain criterion we see
that the differences are very small and not significant. On
this data set none of our gp algorithms manages to perform
better than our simple gp algorithm. Our gp algorithms
are better than C4.5 but not better than its bagged and
boosted versions. Although not particularly good, the re-
sults of the refined gp algorithms using the gain ratio cri-
terion were the most surprising. All refined gp algorithms
using the gain ratio have a standard deviation of 0. An
analysis of the results showed that the misclassification rate
per fold was the same for every used random seed. In the
case of k = 2 and k = 3, the algorithms have exactly the
same misclassification performance while using different the
sets of internal nodes. The same behavior is seen for k = 4
and k = 5. In all cases the discovered decision trees differ
syntactically per fold and random seed.

The Heart Disease Data Set
The results on the Heart disease data set are displayed in
Table 6. All our gp algorithms show a large improvement in
misclassification performance over our simple gp algorithm.
In all but two cases our gp algorithms are also better than
C4.5. On this data set our refined gp algorithms using the
gain ratio criterion perform a little better than the gain cri-
terion variant. cefr-miner is still the best performing algo-

Table 5: Pima Indians diabetes data set results.
algorithm k average s.d. best worst rank
clustering gp 2 26.3 0.5 25.8 27.3 5
clustering gp 3 26.3 0.6 25.4 27.6 6
clustering gp 4 26.7 0.8 25.5 28.0 10
clustering gp 5 26.5 0.9 25.2 28.1 8
refined gp (gain) 2 27.0 0.6 26.0 28.0 11
refined gp (gain) 3 26.5 0.8 25.0 27.6 9
refined gp (gain) 4 25.9 0.8 24.2 26.8 3
refined gp (gain) 5 25.9 0.5 25.1 26.6 4
refined gp (gain ratio) 2 27.6 0 27.6 27.6 12
refined gp (gain ratio) 3 27.6 0 27.6 27.6 12
refined gp (gain ratio) 4 27.7 0 27.7 27.7 14
refined gp (gain ratio) 5 27.7 0 27.7 27.7 14
simple gp 26.3 1.1 24.3 28.5 7
C4.5 28.4 16
Bagged C4.5 24.4 1
Boosted C4.5 25.7 2
cefr-miner N/A
esia 29.8 17

Table 6: Heart disease data set results.
algorithm k average s.d. best worst rank
clustering gp 2 19.9 1.0 18.1 21.1 4
clustering gp 3 21.3 1.3 19.6 23.0 8
clustering gp 4 22.5 1.3 20.4 24.1 13
clustering gp 5 22.1 2.3 17.4 25.2 11
refined gp (gain) 2 19.9 2.5 15.6 24.4 3
refined gp (gain) 3 22.8 2.0 18.9 25.2 14
refined gp (gain) 4 22.1 1.5 20.4 25.2 10
refined gp (gain) 5 21.5 1.6 19.6 24.8 9
refined gp (gain ratio) 2 18.7 0.7 17.4 20.0 2
refined gp (gain ratio) 3 20.3 1.6 17.4 22.6 6
refined gp (gain ratio) 4 20.6 1.1 18.9 22.6 7
refined gp (gain ratio) 5 20.0 1.2 17.8 21.5 5
simple gp 25.2 2.3 22.6 31.1 16
C4.5 ∗ 22.2 12
Bagged C4.5 N/A
Boosted C4.5 N/A
cefr-miner 17.8 7.1 1
esia 25.6 0.3 15

rithm, but the difference with our best (refined) full atomic
gp algorithm using the gain ratio criterion is very small (less
than 1%) and our algorithm has a much smaller standard
deviation. When we look at the number of clusters or max-
imum number of partitions we see that a maximum of 2
clusters or partitions is clearly the best for this data set.

The Ionosphere Data Set
If we look at the results on the Ionosphere data set in Table 7
we see that using the gain ratio instead of the gain criterion
with our refined gp algorithms greatly improves the classi-
fication performance. Only our refined gp algorithms using
the gain ratio criterion also manages to beat C4.5 regardless
of the maximum number of partitions we use. The classifi-
cation performance of our clustering gp algorithms is disap-
pointing as only our clustering gp algorithm with 3 clusters
per numerical valued attribute manages to really outperform
our simple gp but still performs much worse than C4.5.

The Iris Data Set
If we look at the results of our gp algorithms on the Iris
data set in Table 8 we see that by far the best performance
is achieved by our clustering gp algorithm with 3 clusters per
numerical valued attribute. On this data set the refined gp
algorithms using the gain ratio criterion splits the domain

Table 7: Ionosphere data set results
algorithm k average s.d. best worst rank
clustering gp 2 13.1 0.9 11.4 14.2 1
clustering gp 3 10.5 1.2 8.8 13.4 9
clustering gp 4 12.1 1.3 9.4 14.0 14
clustering gp 5 13.3 2.1 10.8 17.4 16
refined gp (gain) 2 8.3 1.0 7.1 10.8 5
refined gp (gain) 3 10.5 1.1 9.1 12.5 10
refined gp (gain) 4 10.8 0.6 9.9 12.0 11
refined gp (gain) 5 11.6 1.7 8.8 15.1 13
refined gp (gain ratio) 2 7.7 0.7 6.8 9.1 3
refined gp (gain ratio) 3 8.1 0.8 7.1 9.4 4
refined gp (gain ratio) 4 8.3 0.9 6.5 10.0 5
refined gp (gain ratio) 5 9.1 1.0 7.1 10.2 8
simple gp 12.4 1.8 8.0 14.3 15
C4.5 8.9 7
Bagged C4.5 6.2 2
Boosted C4.5 5.8 1
cefr-miner 11.4 6.0 12
esia N/A

Table 8: Iris data set results
algorithm k average s.d. best worst rank
clustering gp 2 21.1 0.3 20.7 21.3 13
clustering gp 3 2.1 0.2 2.0 2.7 1
clustering gp 4 5.2 0.7 4.0 6.0 7
clustering gp 5 6.0 0.8 4.7 7.3 10
refined gp (gain) 2 29.6 0.3 29.3 30.0 14
refined gp (gain) 3 6.3 0.3 6.0 6.7 11
refined gp (gain) 4 5.1 0.7 4.0 6.0 6
refined gp (gain) 5 6.5 1.0 5.3 8.0 12
refined gp (gain ratio) 2 31.7 0.9 30.7 32.7 15
refined gp (gain ratio) 3 31.7 0.9 30.7 32.7 15
refined gp (gain ratio) 4 31.7 0.9 30.7 32.7 15
refined gp (gain ratio) 5 31.7 0.9 30.7 32.7 15
simple gp 5.6 1.1 3.3 7.3 8
C4.5 5.9 9
Bagged C4.5 5.0 4
Boosted C4.5 5.0 4
cefr-miner 4.7 7.1 2
esia 4.7 0.0 2

of the numerical valued attributes into 2 partitions regard-
less of the maximum allowed number of partitions. This
is probably the reason for the bad misclassification rate of
these algorithms as both refined representations also classify
badly when the domain of the numerical valued attributes is
split into two partitions or clusters. If we compare our clus-
tering gp algorithms with the refined gp algorithm using the
gain criterion we must conclude that in this case clustering
performs better.

4. CONCLUSIONS
The results of our experiments show a clear indication

that the choice of which nodes are going to be used when
evolving decision trees can be crucial. With the exception
of the German credit data set our clustering and refined gp
algorithms manage to outperform our simple gp algorithm
on all data sets. In the case of the Australian credit and
Heart disease data set our new algorithms are always better
regardless of the maximum number of partitions or clusters
we use. On the other data sets our new algorithms are only
occasionally better but the improvements can be significant
(like for instance on the Iris and Ionosphere data set).

With regards to future research we are looking at several
areas. In [3] we combined clustering, Genetic Programming
and fuzzy logic to evolve fuzzy decision trees. These fuzzy

decision trees offer better classification performance than
similar non-fuzzy trees. Similarly, our refined gp algorithms
using the gain and gain ratio criteria can be transformed
into fuzzy decision tree evolvers. We are also studying vari-
ous methods to reduce the time spend on fitness evaluations
while maintaining classification accuracy. Another area of
interest is improving the non-evolutionary part by looking
at heuristics other than the gain and gain ratio.

5. REFERENCES
[1] W. Banzhaf, P. Nordin, R. Keller, and F. Francone.

Genetic Programming: An Introduction. Morgan
Kaufmann, 1998.

[2] C. Blake and C. Merz. UCI repository of machine
learning databases, 1998.

[3] J. Eggermont. Evolving fuzzy decision trees with
genetic programming and clustering. In J. Foster,
E. Lutton, J. Miller, C. Ryan, and A. Tettamanzi,
editors, Proceedings on the Fifth European Conference
on Genetic Programming (EuroGP’02), volume 2278
of LNCS, pages 71–82. Springer-Verlag, 2002.

[4] J. Eggermont, J. Kok, and W. Kosters. Genetic
programming for data classification: Refining the
search space. In T. Heskes, P. Lucas, L. Vuurpijl, and
W. Wiegerinck, editors, Proceedings of the 15th
Belgium/Netherlands Conference on Artificial
Intelligence (BNAIC’03), pages 123–130, 2003.

[5] Y. Freund and R. Schapire. Experiments with a new
boosting algorithm. In Proc. 13th International
Conference on Machine Learning, pages 148–146.
Morgan Kaufmann, 1996.

[6] L. Hyafil and R. Rivest. Constructing optimal binary
decision trees is NP-complete. Information Processing
Letters, 5(1):15–17, 1976.

[7] M. Keijzer, J. J. Merelo, G. Romero, and
M. Schoenauer. Evolving objects: A general purpose
evolutionary computation library. In P. C. et al.,
editor, Proceedings of Evolution Artificielle’01, volume
2310 of LNCS, pages 231–244. Springer Verlag, 2001.

[8] J. Koza. Genetic Programming. MIT Press, 1992.

[9] J. Liu and J. Kwok. An extended genetic rule
induction algorithm. In Proc. of the 2000 Congress on
Evolutionary Computation, pages 458–463,
Piscataway, NJ, 2000. IEEE Service Center.

[10] R. Mendes, F. Voznika, A. Freitas, and J. Nievola.
Discovering fuzzy classification rules with genetic
programming and co-evolution. In L. de Raedt and
A. Siebes, editors, 5th European Conference on
Principles and Practice of Knowledge Discovery in
Databases (PKDD’01), volume 2168 of LNAI, pages
314–325. Springer Verlag, 2001.

[11] J. Quinlan. C4.5: Programs for machine learning,
1993.

[12] J. R. Quinlan. Induction of decision trees. Machine
Learning, 1(1):81–106, 1986.

[13] I. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann, 2000.

