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Abstract. Frequent itemset mining is a promising approach to the
study of genomic profiling data. Here a dataset consists of real num-
bers describing the relative level in which a clone occurs in human DNA
for given patient samples. One can then mine, for example, for sets of
samples that share some common behavior on the clones, i.e., gains or
losses. Frequent itemsets show promising biological expressiveness, can
be computed efficiently, and are very flexible. Their visualization pro-
vides the biologist with useful information for the discovery of patterns.
Also it turns out that the use of (larger) frequent itemsets tends to filter
out noise.

1 Introduction

Frequent itemsets are often used in Data Mining research [11]; they can supple-
ment the more traditional statistical approach [2]. The concept is simple, many
efficient algorithms are devised to detect different types of frequent itemsets,
and there is a rich literature describing associated topics. For instance, many re-
searchers dealt with the problem of finding interesting sets, and the fuzzy logic
approach also gave a new impetus. The most well-known application is in the
area of market-basket analysis. In this case a frequent itemset is a set of prod-
ucts that is often purchased together. From such a set one can easily deduce
association rules of the form “if one buys X , one (often) buys Y too”.

In this paper we apply the frequent itemset approach to explore copy number
changes in the genome. Chromosomal instability in tumors leads to DNA copy
number alterations with associated gain or loss of genes important in tumor
development [5]. Array-based comparative genomic hybridization (array CGH)
allows for high-throughput genome-wide screening of these DNA copy number
changes [1,7,9]. Typically, these experiments involve co-hybridization of a few
hundred fluorescently labeled patient DNA samples with normal reference DNA
onto microarrays containing several thousands of large-insert genomic clones
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(relatively short pieces of DNA) such as bacterial artificial chromosomes (BACs).
The resulting dataset is a database of clones, each consisting of a few hundred real
numbers. Any such number describes the normalized log2-ratio of the number of
clone copies found in a given patient sample compared with the reference DNA.
When there is no copy number change in the patient DNA, the log2-ratio is
expected to be 0 (no change). When the log2-ratio lies above a certain threshold
or below another fixed threshold, the patient has a gain or a loss, respectively,
for this clone. In principle, the boundaries between no change and change are
very strict, allowing discretization of the data. However, factors such as tissue
heterogeneity (i.e., a loss or a gain is present in only a subset of the cells) and
the use of amplification procedures introduce more variation in measurements,
making such boundaries less strict. And finally, we have the usual problems like
measurement noise.

The database records can be viewed in (at least) two different ways. First,
one can look at the clones as transactions, and view the samples as items; this is
called here the frequent sample sets model. Note that this is the way in which the
data is usually presented. Second, one can also see the samples as transactions,
and the clones as items; this we call the frequent clone sets model. In this paper
we treat both approaches, with emphasis on the first one. If we adhere to the
first choice, we are interested in groups of samples, where the group elements
share some common behavior; for the second choice, we try to find associations
between clones. We shall provide many examples of the use of frequent itemsets
in this biological setting.

For related work we refer to [8], where — among other things — minimal and
related gain and loss zones are detected using frequent pattern mining. In [10]
a method is discussed that deals with finding interesting association rules. The
first step is to generate frequent itemsets. From these one can deduce a huge
amount of association rules. The authors deal with a method to filter out, after
all rules are discovered, the most interesting rules for biologists.

In the current paper we generate the frequent itemsets and extract useful in-
formation from those. We also show that frequent itemsets can be used to reduce
the effect of noise. We mainly focus on visualizations, which are easily made and
from which biologists can deduce information about certain relations between
clones or patient samples. Our method is meant to be used as an exploratory
tool, aiming at pattern discovery, that can be used in combination with other
methods.

We shall not treat the database in any detail, but rather refer to the paper
where it originates from [6]. In a few places we shall provide the necessary bio-
logical background, and we mention the biological consequences of the proposed
methods. Anyway, there is a lot of data preparation involved, apart from some
trivial data cleaning. In particular we mention the problem of distinguishing
change from no change, as mentioned above, which is both of technical as well
as biological nature.

The paper is organized in the following way. We first describe the method and
illustrate it by using artificial data (Section 2 and Section 3), for both models
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mentioned earlier. In Section 4 we apply the techniques to the real life data from
[6] and focus on the biological consequences of the proposed methods. We end
with some conclusions and issues for further research.

2 Frequent Itemsets

Suppose we have a dataset D consisting of subsets (usually called itemsets) of
a given finite set I. The subsets have unique identifiers, so multiple occurrences
of the same subset may appear. It is also possible to consider the dataset as a
(time ordered) series, but this viewpoint is not taken here.

For any subset S of I we define its support as the number of elements in
D that contain S. An itemset is called frequent if its support is larger than or
equal to a pre-given support threshold minsup. If an itemset has k elements, it
is called a k-itemset.

The first main problem in frequent itemset mining is to find all frequent
itemsets for a given D and minsup. There exist many efficient implementations
to tackle this problem. The fastest ones rely on so-called FP-trees and use the
Apriori property [11]. For the experiments we used the implementation from [3].

In this paper we focus on data from array CGH studies. Here the original
database consists of real numbers, but it is discretized to a database describing
if a sample has a gain on a clone or not, or to a database showing if a sample has
a loss on a clone or not. This is done because in CGH analysis one is often more
interested in whether or not a patient has a gain (loss) at some clone, and not
in the exact value. So the database consists of itemsets that are either sets of
samples that have higher (lower) value than normal for a given clone, or sets of
clones that have higher (lower) value than normal for a given sample. depending
on whether we are more interested in the gains or the losses. In the first case,
the clone is the identifier of the itemset, in the second case the sample is the
identifier. One can think of the database as a two-dimensional array where rows
correspond to clones and columns to samples (or the other way round in the
second case). The transformed database contains only zeros and ones. If a clone
occurs more (less) than normal for a given patient (its value being higher (lower)
than some threshold), it is assigned a one on the corresponding array position,
otherwise a zero.

3 Simulated Data

A dataset with similar structure to the one from array CGH studies was simu-
lated as follows. A total of 150 samples, with 3200 observations per sample, are
divided into three main groups of 50 samples each. Samples in each group are
characterized by having in common a specific copy number effect in one of the
chromosomes, as well as other effects in other chromosomes, as summarized in
Table 1. The effect is assumed to hold for a given number of consecutive clones
(shown between brackets) at the beginning of the affected chromosomes.
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These three groups can be thought of as referring to patients with the same
disease, but different genotypes. This is observed for example in many cancers,
where various genotypic mechanisms can lead to the same result, as in the same
kind of cancer. It is important to identify these different mechanisms since they
often are associated with varying susceptibility levels to treatments and, as a
consequence, varying chances of recovery. Sometimes these mechanisms share
part of their structure, but differ in other parts.

Unaffected clone intensities are assumed to be independent of each other and
to follow a normal distribution with mean 0 and standard deviation 1. Affected
clone intensities are also assumed to be independent of each other and have a
normal distribution with standard deviation 1, but their mean is taken as either
3 (if effect is a gain) or –3 (if effect is a loss).

Table 1. Summary of simulated effects (G = gain, L = loss)

Samples Chromosomes Gains/losses
affected 1 3 7 10 11 13 18 20 (total)

136–150 G(60) G(40) G(30) 130/0
121–135 G(60) L(50) 60/50
101–120 G(60) 60/0
91–100 0/0
76–90 L(80) L(60) 0/140
61–75 L(80) G(50) 50/80
51–60 L(80) 0/80
36–50 G(60) G(30) G(20) 110/0
21–35 G(60) L(50) 60/50
1–20 G(60) 60/0

In order to evaluate the effect of having more or less noise in the data, we have
also simulated a dataset with the same structure and effects, where the standard
deviation of the measurements was 0.6 instead of 1. This dataset is referred to as
the ideal dataset : it corresponds to an “ideal” scenario, where there is very good
separation between measurements with copy number and without. Of course,
in such a case no special method has to be used to identify effects. In practice,
however, it is more common to observe datasets with less perfect separation, as
the first one. This dataset is called the noisy dataset.

3.1 The Frequent Sample Sets Model

We now regard the database as an ordered series of 3200 clones. Each record (i.e.,
clone, transaction) consists of 150 real numbers, corresponding to the samples
(patients). As mentioned before we first transform the database into a database
of zeros and ones after defining suitable thresholds for gains and losses.

In order to obtain insight in the data, and also to give a first (simple) ap-
plication of frequent itemsets, in Figure 1 we show all frequent samples, i.e.,
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1-itemsets. In the left hand side picture we have the ideal dataset, in the right
hand side picture the noisy dataset. In a sense, these pictures give simple snap-
shots of the entire dataset: the picture on the left clearly reflects Table 1, while
the dense regions of +’s and ×’s in the picture on the right also do so, but less
convincing. The vertical lines denote the chromosome boundaries, with the chro-
mosome numbers on top. We show the 1-itemsets for gains and the 1-itemsets
for losses in one picture; gains (value > 2.0) have +’s, losses (value < −2.0) have
×’s. If a 1-itemset {i} has at least minsup = 30 gains, those gains are plotted
horizontally at y-level i, and similarly for the losses. For example, sample 80
has a series of ×’s for chromosomes 1 and 11, and single ×’s for clone 1306 (in
chromosome 7) and clone 1623 (in chromosome 9). For the ideal dataset there
are 115 frequent 1-itemsets for gains (meaning there are 115 patient samples
having a gain on at least 30 clones), and 70 for losses — as expected. The noisy
dataset has 150 frequent 1-itemsets for both, or equivalently: every 1-itemset is
frequent here, so every patient has at least 30 gains and 30 losses!
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Fig. 1. Frequent samples (1-itemsets) for ideal (left) and noisy (right) dataset; gains

(+) and losses (×)

The left hand side picture clearly shows the expected effects, the right hand
side picture is much more diffuse. The supports on the left (the numbers of
+/×’s in a single row) are smaller and the distribution is more crisp.

Note that these two pictures are the only ones that contain two types of
itemsets in one image. In order to be frequent, an itemset should have at least
some minimum number of gains or losses (but not together). In the sequel we
also mention “combined gains and losses”, which means that we add the numbers
of gains and losses.

We now try to find larger sets of samples that share some common behavior,
i.e., we look at k-itemsets with k > 1. We first examine gains; we let minsup = 60.
In the plots from Figure 2 we depict the frequent 2-itemsets. Every horizontal
series of +’s indicates the clones that have gains for both samples in the set.
The frequent itemsets are depicted in the order in which they are generated by
the algorithm from [3]; roughly speaking, larger supports occur for the higher
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numbered sample sets. Neighbouring sample sets usually have a non-empty in-
tersection in this order (which is not the case if they are ordered by support).
Again, the left hand side picture is for the ideal dataset. In this case we have
443 frequent 2-itemsets; the 2-itemset {138, 140} has the highest support: 122.
This means that there are 122 clones on which sample 138 and sample 140 both
have gains. Note that the gains series on chromosome 7 is not visible, since
its length (50 clones) is smaller than minsup and samples 61–75 have no other
gains. Therefore no combination of two samples from 61–75 (the only samples
that have gains on chromosome 7) can reach the threshold 60. Furthermore, the
samples 61–75 will not occur in any of the 443 frequent 2-itemsets.
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Fig. 2. Frequent 2-itemsets for ideal (left) and noisy (right) dataset; gains
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Fig. 3. Frequent sample sets (3-itemsets) for noisy dataset; losses; left: loss if value

< −2.0, right: loss if value < −1.5

For the noisy dataset (Figure 2, right) there are 405 frequent 2-itemsets; the
2-itemset {139, 141} has the highest support: 105. Like in the ideal case we do
not see the gains at chromosome 7 here either.

This example also reveals that a larger value of the size of the itemsets
allows for better pictures, in particular for the noisy case. Patterns are much
more visible now. In a next step one might decide to study chromosomes 3, 10,
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18 and 20 in more detail, e.g., using the same method again on these specific
chromosomes.

As a final picture we show the frequent 3-itemsets (at least having 80 common
losses) for the noisy dataset, see Figure 3. In the left plot we have a loss if the
dataset value is smaller than −2.0 (344 itemsets), in the right plot if the value is
smaller than −1.5 (459 itemsets). This shows the dependence on the threshold
defining gains/losses. Note that losses on chromosome 13 are not visible, because
they only occur on 50 clones, and for samples which do not have losses elsewhere.
It appears that the itemsets show a lot of overlap — a phenomenon that emerges
even more for larger values of the itemset size.

3.2 The Frequent Clone Sets Model

As said in the introduction, we can also look at the database as being a series of
samples. In that case we are interested in sets of clones that behave in a similar
way, e.g., are all gains on at least some minsup common samples.

The picture below (Figure 4, left), which is just a “random” example, shows
the 1136 frequent 7-itemsets (so each itemset consists of 7 clones) where each
element has a value larger than 2.0 on at least minsup = 50 common (among
the 7 elements) samples, for the noisy dataset. On the right the 7 elements are
plotted for these sets. As observed above, there is a lot of overlap present here.
Furthermore note that only the clones at the beginning of chromosome 3 are
gains for at least 50 patient samples, which is consistent with Table 1.
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Fig. 4. Frequent clone sets (7-itemsets) for noisy dataset; gains; right: the set elements

4 Application to Colon Cancer Data

Nakao et al. [6] analyzed copy number changes in the genomes of 125 colorectal
tumors using array CGH on microarrays containing 2463 BAC clones that cov-
ered the human genome at 1.5 Mb resolution. Their publicly available dataset
contains normalized log2-ratios for 2124 clones (after filtering), located on chro-
mosomes 1–22 and the X-chromosome (here referred to as 23). In this dataset
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any value larger than 0.225 is considered as a gain, any value smaller than –0.225
is considered as a loss. This threshold corresponds to values between 2 and 3
standard deviations from the mean. The total number of gains and losses varies
between 2 and 1020 per sample.

The authors concluded that the majority of clones were infrequently gained
or lost, with 95% of the changes occurring less than 35% of the time. However,
high-frequency gains were detected on chromosomes 7p (35%), 7q (35%), 8q
(42%), 11q (35%) and 20q (65%), and high-frequency losses were detected on
5q (35%), 8p (37%), 17p (46%), 18p (49%), 18q (60%), and 21q (35%). The
distribution of alterations over the individual patients was not explored.

In Figure 5 we depict all 125 1-itemsets (combined gains and losses). In the
left panel the samples are shown in the order in which they occur in the original
dataset; in the right panel they are ordered with respect to their support. The
1-itemset {53} has the highest support: 1020.
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Fig. 5. All 1-itemsets, combined gains and losses; left: original order, right: ordered

with respect to support
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Fig. 6. Frequent sample sets; 2-itemsets; left: gains, right: losses

In Figure 6 we show the 985 frequent 2-itemsets for gains (left) and the 629
frequent 2-itemsets for losses (right), both for minsup = 100. Again a larger
value of the itemset size gives rise to a clearer picture, showing e.g. common



112 J.M. de Graaf et al.

regions of gains on chromosomes 7, 8, 13, 20 and 23, which is consistent with the
conclusions in [6]. However, the results for the synthetic noisy dataset are more
outspoken, due to the random nature of this set.

This becomes even more apparent if we consider the 55 10-itemsets (minsup
= 100), see Figure 7. To the left we see the usual plot, showing a very small
region in chromosome 11 having a gain, also detected in [6]. This region was not
so clear from Figure 6, showing the importance of studying larger itemsets and
thus filtering out more noise. To the right we plot for each set its 10 elements.
This picture shows that the sets have quite a lot in common. It could have been
worse: in the current situation there are no 11-itemsets; the 10-itemsets are all
maximal (i.e., all their supersets are infrequent) and hence closed (i.e., all their
supersets have lower support). The number of frequent itemsets depends on their
size and on the support threshold minsup, as shown in Table 2. It is a challenging
task to find combinations that give rise to interesting visualizations.
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From the biological viewpoint, the visualizations yield relevant information
about the dataset, which is commonly hard to obtain. First, from Figure 5 no
clear patterns emerge, a common feature of tumor samples. As they grow, tumors
accumulate genomic changes, each tumor accumulating different changes. Most
of these changes occurring during tumor growth are believed to be results of
random processes, adding noise to the decisive changes that turned the tissue
into a tumor in the first place. Then in Figure 6 (left) it shows that, by focusing
on 2-itemsets with gains, the noise is filtered out and some patterns become
evident, such as gains in chromosomes 7, 8, 13 and 20. By then progressively
increasing the value of the itemset size, noise is step-by-step being filtered out
and only the most consistent patterns remain. Indeed, only 20 of the 125 samples
(16%) in the dataset contribute to the 10-itemsets represented in Figure 7, but
these have a consistent pattern of copy number changes in chromosomes 8, 18 and
20. Also chromosomes 11 and 17 show some activity. Changes in chromosome 23
(the X chromosome) are often ignored, as they mostly indicate that the sample
and the control are of opposite genders, which is not of main interest.
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Table 2. Number of frequent itemsets for different size and minsup: gains/losses/

combined gains and losses

minsup
Size 80 90 100

1 90/84/97 87/79/96 84/76/95
2 1519/1002/3196 1236/800/2942 985/629/2743
3 6281/2222/37417 3675/1282/29634 2036/726/23228
4 10135/1618/179576 4001/647/112866 1601/285/71539
5 8090/621/425627 2147/213/210119 546/79/103318
6 3692/185/581939 556/52/220138 39/12/83637
7 972/30/507966 55/4/148282 0/0/43049
8 155/1/300636 2/0/65081 0/0/12865
9 9/0/117955 0/0/16428 0/0/1739
10 0/0/27494 0/0/1864 0/0/55
11 0/0/3048 0/0/43 0/0/0
12 0/0/79 0/0/0 0/0/0

We now look at the frequent clone sets model. Experiments showed that
chromosome 20 was really dominant. Taking into account only clones 1–1800,
finer patterns on other chromosomes can be discovered. As an example we show
the 199 9-itemsets for gains (Figure 8), with minsup = 30. The right picture
has the set elements (cf. Figure 4), all on chromosome 8. The four neighbouring
clones near 900 are indeed of biological interest.

It is possible to use the frequent itemset approach for the discovery of partic-
ular phenomena. For example, there is exactly one 4-itemset, the set of samples
{53, 59, 66, 80}, having 300 or more common gains and losses.

If one keeps track of the distance between consecutive common gains (and/or
losses) one can order the frequent itemsets found. For example, for the 4-itemset
mentioned before, 69% of the 313 common gains and losses are really consecutive;
if one allows for at most one intermediate normal clone (a so-called gap), this
percentage rises to 87%. In Figure 9 above we plot these last percentages for all
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Fig. 9. Consecutiveness percentages; left: 1-itemsets, gains and losses; right: 2-itemsets,

gains (sets on x-axis)

125 1-itemsets (gains and losses; ordered on the x-axis with respect to increasing
support; left) and the 985 frequent 2-itemsets (gains; minsup = 100; right).
Efficiently incorporating consecutiveness into frequent itemset mining seems non-
trivial and is left for future work.

5 Conclusion and Further Research

We presented a method to discover patterns in array CGH datasets. We make use
of frequent itemset mining in order to obtain combinations of samples or clones
that share some common behavior. The method is flexible, fast (the generation of
a picture usually takes a few seconds), capable of dealing with noise, and allows
for different types of post-processing. In contrast with many other techniques
the method is largely unsupervised, and allows for individual patient tracking.

Once given the frequent itemsets, one can use many different Data Mining
techniques. It is for instance possible to use Self Organizing Maps (SOMs) and
the like in order to obtain visualizations. In Figure 10 the 55 10-itemsets from
Figure 7 are embedded in the unit square, using a push-and-pull network [4].
The Euclidean distance between embedded data points in the plain resembles
the “gains and losses distance”, obtained by squaring the difference in numbers
of gains and losses on the different chromosomes.

We are very interested to extend the frequent itemset analysis to amplified
array CGH data, which is more noisy due to reproducible ratio distortions re-
sulting from differential processing of repetitive and polymorphic regions by the
amplification enzyme [1]. In this dataset, the boundaries depend on the clone at
hand, and new techniques are needed to deal with this varying boundary value
issue. Perhaps fuzzy logic might be useful. We would also like to add clinical data
such as stage of the tumor or age of the patient, expressed in association rules
with attached interestingness measures. Finally, we will explore application of
frequent itemsets to other types of genomic data, such as single nucleotide poly-
morphism genotyping data.
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