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Abstract. First-order logic with k-ary deterministic transitive closure
has the same power as two-way k-head deterministic automata that use
a finite set of nested pebbles. This result is valid for strings, ranked trees,
and in general for families of graphs having a fixed automaton that can
be used to traverse the nodes of each of the graphs in the family. Other
examples of such families are grids, toruses, and rectangular mazes.

1 Introduction

The complexity class DSPACE(log n) of string languages accepted in logarithmic
space by deterministic Turing machines, has two well-known distinct characteri-
zations. The first one is in terms of deterministic two-way automata with several
heads working on the input tape (and no additional storage). Second, Immerman
[20] showed that these languages can be specified using first-order logic with an
additional deterministic transitive closure operator — it is one of the main re-
sults in the field of descriptive complexity [11,21]. Similar characterizations of
NSPACE(logn) hold for their nondeterministic counterparts.

The two characterizations each have a natural parameter indicating the rela-
tive complexity of the mechanism used. For multi-head automata the parameter
is the number of heads used to scan the input. It is known that k + 1 heads
are better than k, even for a single-letter input alphabet [26]. For transitive clo-
sure logics, the parameter is the arity of the transitive closure operators used. It
seems to be open whether (k 4+ 1)-ary transitive closure is more powerful than
k-ary transitive closure.

Bargury and Makowsky [2] characterize k-head automata by a “k-regular”
subset of first-order logic with k-ary transitive closure but their characterization
only works in the nondeterministic case: “the modification of the k-regular for-
mulas needed to take out the nondeterminism will spoil their elegant form, and
we do not pursue this further”.

Here we set out from the other side and present an automata-theoretic char-
acterization of first-order logic with deterministic k-ary transitive closure. Our
deterministic two-way automaton model has k£ heads, as expected, but is aug-
mented with the possibility to put an arbitrary finite number of pebbles on its
input tape, to mark positions for further use. If these pebbles can be used at
will it is folklore that we obtain again DSPACE(logn), a family too large for
our purpose. Instead we only allow pebbles that are used in a nested (or LIFO)
fashion: all pebbles can be ‘seen’ by the automaton as usual, but only the last
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one dropped can be picked up [19,13,25,16]. On the other hand our pebbles are
more flexible than the usual ones: they can be ‘retrieved from a distance’, i.e., a
pebble can be picked up even when no head is scanning its position.

Our equivalence result (Theorem 5) is stated and proved for ranked trees
in general, of which strings are a special case. The automaton model is the
deterministic tree-walking automaton (with nested pebbles) which generalizes
two-way automata on strings. One consequence of the result is that the class of
tree languages accepted by these automata is closed under complement [27].

In Section 3 we translate logical formulas into automata, following [13] and
additionally using the technique of Sipser [32] to deterministically search a com-
putation space. Section 4 considers the reverse. As in [2] we adapt Kleene’s con-
struction to obtain regular formulas from automata, thus getting rid of the states
of the automaton, but we need to iterate that construction: once for each nested
pebble. In Section 5 we discuss the main result for single-head tree-walking au-
tomata, which are relevant as a model of XML [25, 28, 23]. Finally, in Section 6
we show how to extend our results to more general graph-like structures, such
as unranked trees (important for XML), grids (as in [2]; important for picture
recognition [3, 18, 24]), toruses, and, for k > 2, mazes [4, §].

Due to space limitations many examples, technical details, explanations, foot-
notes, and references had to be omitted. The reader may find them in [14].

2 Preliminaries

A ranked alphabet is a finite set X together with a mapping rank : X' — N. Terms
over Y are recursively defined: if 0 € X' is of rank n, and ¢4,...,t, are terms,
then o(t1,...,t,) is a term. As usual, terms are visualized as trees, which are
special labelled graphs; o(t1,...,t,) as a tree which has a root labelled by o and
outgoing edges labelled by 1,...,n leading to the roots of trees for ¢1,...,¢,.
The root of subtree ¢; has child number ¢; for the root of the full tree it is 0.

For k > 1, a k-head tree-walking automaton or twa is a finite-state device
that moves its k& heads from node to node along the edges of the input tree.
It determines its next move based on its present state, and the label and child
number of the nodes visited. Accordingly, it changes state and, for each of its
heads, it stays at the node, or moves either up to the parent of the node, or
down to a specified child. If the automaton has no next move, we say it halts.
The language accepted by the k-head twa A is the set of all trees on which A has
a computation starting with all its heads at the root of the tree in the initial state
and halting in an accepting state, again at the root of the tree. The family of
languages accepted by k-head (deterministic) twa is denoted by NW*A (DWFA).

A twa is able to make a systematic search of the tree (a preorder traversal),
even using a single head, as follows. When a node is reached for the first time
(entering it from above) the automaton continues in the direction of the first
child; when a leaf is reached, the automaton goes up again. If a node is reached
from below, from a child, it goes down again, to the next child, if that exists;



otherwise it moves to the parent of the node. The search ends when the root is
entered from its last child. This traversal underlies our basic constructions.

In both [29] and [30], as an example, the authors explicitly construct a de-
terministic 1-head twa that evaluates boolean trees, i.e., terms with binary op-
erators ‘and’ and ‘or’ and constants 0 and 1.

Strings form a special case. Tree-walking automata on monadic trees (each
symbol has rank one except a special symbol with rank zero) are equivalent to
the usual two-way automata on strings.

For an overview of the theory of first-order and monadic second-order logic on
strings and trees in relation to formal language theory, see [34]. Here we consider
first-order logic, describing properties of trees. The logic has node variables
z,y,..., which for a given tree range over its nodes. There are four types of
atomic formulas over X: lab, (x), for every o € X, meaning that x has label o;
edg;(x,y), for every i at most the rank of a symbol in X', meaning that the i-th
child of x is y; < y, meaning that = is an ancestor of y; and x = y. Formulas
are built using the connectives -, A, and V, and quantifiers 3 and V as usual.

If t is a tree with nodes uq,...,uy,, and ¢ is a formula such that its free
variables are x1, ..., x,, then we write ¢t = ¢(u1,...,u,) if formula ¢ holds for ¢
where the free x; are valuated as u;.

For fixed k > 1, by overlined symbols like T we denote k-tuples of objects of
the type referred to by z, like logical variables, nodes in a tree, or pebbles.

Let ¢(Z,7) be a formula where T, § are distinct k-tuples of variables occurring
free in ¢. We use ¢* (T, y) to denote the k-ary transitive closure of ¢ with respect
to 7, y. Informally, ¢*(T,y) means that we can make a series of jumps from nodes
T to nodes ¥ such that each pair of consecutive k-tuples Z’,7 connected by a
jump satisfies ¢(z’, 7). The formula ¢ may have additional free variables.

A predicate ¢(T,y) with free variables Z, 7 is functional (in Z,7) if for every
tree t and k-tuple of nodes W there is at most one k-tuple ¥ such that ¢ = ¢(w, v).
If ¢ has more free variables than 7, 3, this should hold for each fixed valuation of
those variables. The transitive closure ¢*(,7) is deterministic if ¢ is functional
(in the variables with respect to which the transitive closure is taken).

The tree language defined by a closed formula ¢ consists of all trees ¢ such
that ¢ = ¢. The family of all tree languages that are first-order definable is
denoted by FO; if one additionally allows k-ary (deterministic) transitive closure
we have the family FO+TC* (FO+DTCF). For strings, general (deterministic)
transitive closure (i.e., over unbounded values of k) characterizes the complexity
class NSPACE(logn) (DSPACE(logn)), see [11,21].

3 From Logic to Nested Pebbles

A k-head tree-walking automaton with nested pebbles is a k-head twa that is
additionally equipped with a finite set of pebbles. During the computation it
may drop these pebbles (one by one) on nodes visited by its heads, to mark
specific positions. It may test the currently visited nodes to see which pebbles are
present. Moreover, it may retrieve a pebble from anywhere in the tree, provided



the life times of the pebbles are nested (which means that only the last one
dropped can be retrieved). This can be formalized by keeping a (bounded) stack
in the configuration of the automaton, pushing and popping pebbles when they
are dropped and retrieved. Pebbles can be reused any number of times (but
there is only one copy of each pebble). Computations should start and end
with all heads at the root without pebbles on the input tree. The family of tree
languages accepted by (deterministic) k-head twa with nested pebbles is denoted
by NPW*A (DPWFA).

Note that pebbles (1) are nested, as in e.g., [19,13,25,16]; without this re-
striction again the classes DSPACE(logn) and NSPACE(logn) are obtained, (2)
behave as pointers: we can store the address of a node when we visit it, and we
can later whipe the address from memory without returning to the node itself
(“abstract markers” [3] as opposed to the usual “physical markers”), (3) always
remain visible to the automaton (not only the last one dropped, as in [19]).

Ezample 1. As in [6], consider a ranked alphabet with one binary symbol and
two nullary symbols a and b, and consider the trees for which the path to each
a-labelled leaf contains an even number of nodes on the ‘branching structure’ of
the tree, i.e., nodes for which both the left and right subtree contain an a-labelled
leaf. This is a first-order definable tree language that cannot be accepted by any
single-head nondeterministic twa (without pebbles) [6].

However, it can be accepted by a (single-head) deterministic twa with two
nested pebbles as follows. Using a preorder traversal, the first pebble is placed
consecutively on a-labelled leaves. For each such leaf we follow the path upwards
to the root counting the number of nodes that belong to the branching structure.
To test whether a node belongs to that structure we place the second pebble on
the node and test whether its other subtree, i.e., the one that does not contain the
first pebble, contains an a-labelled leaf (using again a traversal of that subtree,
the root of which can be recognized through the second pebble). O

We now generalize the inclusion FO C DPW!A from [13], introducing k-ary
transitive closure, as well as allowing k heads. Note that here we use ‘pointer-like’
pebbles, rather than the usual pebbles.

Lemma 2. For ranked trees, FO+DTC* C DPWFA.

Proof. By induction on the structure of the formula ¢ we construct an automaton
A that always halts on its input tree t. Generally speaking, each variable of ¢
acts as a pebble for A. In case of k-ary transitive closure we need 3k pebbles
to test the formula. Most features can be simulated using a single head, moving
pebbles around, only for transitive closure we need all the £ heads.

For intermediate formulas with free variables we fix the valuation of these
variables by putting pebbles on the tree, one for each variable, and A should
evaluate the formula according to this valuation; it may test these pebbles but
is not allowed to retrieve them. Automaton A is started in the initial state with
all heads at the root of the tree ¢, it may use additional pebbles (in a nested
fashion), and it should halt again with all heads at the root.



For the atomic formulas (single-head) automata are easily constructed. As an
example, for edg,(z, y) the automaton searches for pebble z, determines whether
x has an i-th child (the arity of the node can be seen from its label), moves to
that child, and checks there whether pebble y is present.

For the negation ¢ = —¢; we use the automaton for ¢;, changing its ac-
cepting states to the complementary set. This works thanks to the fact that the
automata we build are always halting. A similar argument works for conjunction
and disjunction, running the automata for the two constituents consecutively.

For quantification ¢ = (V)¢ the automaton A makes a systematic traversal
through the tree, using a single head. Reaching a node it drops a pebble z, returns
to the root, and runs the automaton for ¢; as a subroutine; the free variable x
of ¢1 is marked by the pebble, as requested by the inductive hypothesis. When
the test for ¢;(x) is positive, A returns to the node marked z (searching for it),
picks up the pebble, and places it on the next node of the traversal; A accepts
if it has succesfully run the test for ¢, for each node. Existential quantification
is treated similarly.

For transitive closure ¢ = ¢] we need to walk from one k-tuple of nodes T to
another k-tuple ¥ with ‘jumps’ specified by the 2k-ary formula ¢;. Doing this in
a straightforward way, we might end ‘jumping around’ in a cycle. To obtain an
automaton that always halts we use the technique of Sipser [32], and run this
walk backwards. It is based on the observation that the computation space is
actually a tree. Consider all k-tuples of nodes of the input tree ¢, and connect
vertex! U to vertex U if the pair (u,?) in t satisfies ¢1(Z,7). As ¢; is functional,
for each vertex there is at most one outgoing arc. Choosing vertex y as root we
obtain a directed tree ¢ (y), with arcs defined by ¢; pointing towards the root
y; there is no bound on the number of arcs incident to each vertex. It consists
of all vertices © that satisfy ¢t = ¢(@, 7).

The automaton A traverses that tree t5 () and tries to find the vertex marked
by pebbles T. However, tx(y) is not explicitly available and has to be recon-
structed while walking on the input tree ¢, using the automaton 4; for ¢; as a
subroutine. Note that k-tuples of nodes of ¢ can be enumerated (ordered) using
the lexicographical ordering based on the preorder in ¢. To find the successor of
a k-tuple z we act like adding one to a k-ary number: change the last coordinate
of the tuple Z into its successor (here the preorder successor in t) if that exists,
otherwise reset that coordinate to the first element in the ordering (here the root
of t), and consider the last-but-one coordinate, etc. In fact, this can be done by
a single-head twa using the pebbles marking Zz in a nested fashion.

We traverse the tree t;(y), with 2k pebbles T and ¥ fixed, with the help of
3k additional pebbles ', 7', and Z’. Starting in ¥ we determine whether vertex
T belongs to t (7). During this traversal, A keeps track of the current vertex of
tr(y) with its k£ heads. The order of dropping the pebbles T’ and 7’ differs in the
two algorithmic steps below: in the first we have to check ¢1(%',7’) ‘backwards’,
finding Z’' given 7', while in the second it is the other way around.

! For clarity we distinguish ‘node’ in the input tree from ‘vertex’ in the computation
space, i.e., a k-tuple of nodes. Similarly we use ‘edge’ and ‘arc’.



Step one: check whether the current vertex has a first child in #4(7), and
go there if it exists. We drop pebbles 7' to fix the current vertex, and we ‘lex-
icographically’ place pebbles T on each candidate vertex (except v). For each
k-tuple T’ we check ¢1(T',7’) using automaton A; as a subroutine. If the formula
is true, we have found the first child in ¢x(y) and we move the k heads to the
nodes marked by Z’, lift pebbles ', and retrieve pebbles 7' (from a distance).
Otherwise we move T’ to the next candidate vertex. If none of the candidates T’
satisfies ¢1(7',7’), the vertex ¥’ apparently has no child in ¢ (7).

Step two: check for a right sibling in ¢x(g), and go there if it exists, or go up
(to the parent of the current vertex) otherwise. The problem here is to adhere to
the proper nesting of the pebbles. First drop pebbles T’ on the current vertex.
Then determine its parent in ¢(%); this is the unique vertex y' that satisfies
¢1(T',7'), thanks to the functionality of ¢;1. It can be found in a ‘lexicographic’
traversal of all k-tuples of nodes of ¢ using pebbles 7’ and subroutine A;. Leave
7' on the parent and return to T’ (by searching for it in ¢). Using the third set
of k pebbles z’, traverse the k-tuples of nodes of ¢ from T’ onwards and try to
find the next k-tuple that satisfies ¢1(z’,7’) when Z’ is dropped. If found, it is
the right sibling of Z’; return there, lift Z’, and retrieve ' and Z’'. Otherwise, the
current vertex has no right sibling; go up in the tree ¢(7), i.e., return to 7', lift
7', and retrieve T'. O

4 From Nested Pebbles to Logic

The classical result of Kleene shows how to transform a finite-state automaton
into a regular expression, which basically means that we have a way to dispose
of the states of the automaton. It is observed in [2] that this technique can also
be used to transform multi-head automata on grids into equivalent formulas
with transitive closure: transitive closure may very well specify sequences of
consecutive positions on the input, but has no direct means to store states. A
similar technique is used here. As our model includes pebbles, this imposes an
additional problem, which we solve by iterating the construction for each pebble.
Unlike [2] we have managed to find a formulation that works well for both the
nondeterministic and deterministic case.

If the step relation of a deterministic finite-state device with k heads is spec-
ified by logical formulas, then its computation relation can be expressed using
k-ary deterministic transitive closure. This is formalized as follows.

Let @ be a Q x Q matrix of predicates ¢, 4(T,7), p,q € @ for some finite set
Q (of states), where 7,7 each are k distinct variables occurring free in all ¢, .
We define the computation closure of & with respect to T,y as the matrix ¢#
consisting of predicates ¢ﬁq (T,7) where t = gb;ffq (w,v) iff there exists a sequence
of k-tuples of nodes ug, u1,...,u, and a sequence of states pg,p1,...,pPn, n > 1,
such that @ = To, U = Up, p = Po, ¢ = Pn, and t = ¢p, p,, (Ui, Uip1) for 0 < i <
n.(?) Intuitively ¢ |= ¢# (@, V) means that there is a @-path of consecutive steps
(as specified by @) leading from nodes % in state p to nodes ¥ in state g.

% For simplicity, we disregard the remaining free variables of the ¢4 and ¢7,.



We say that @ is deterministic if its predicates are both functional and ex-
clusive, i.e., for any p,q,q’ € @ and 3k nodes %,7,7’ of any tree t, if both

t = ¢pq(u,v) and t = ¢pq (U, 0’) then ¢ =¢ and v ="7".
Lemma 3. If & is in FO+DTCF and deterministic, then % is in FO+DTCF.

Proof. Assume that Q = {1,2,...,m}. We construct matrices ¢ of formu-
las ¢) in FO+TC* which are defined as oF .,
states pi,...,pn_1 are chosen from {1,...,¢}. In particular, #© = &, and
@(m) = ¢# . Inductively we obtain QS(“‘U as follows qb (e4-1) ( ,T) = qﬁp,q(x 7) V

(F7 7)) ¢p e+1(_ _/) (¢¢+1 ) @7 A ¢e+1 q( ".7) ]- The transitive closure

is deterministic: gbe +1.041 is functional because @ is deterministic and because
&-paths ending in £+1 cannot be extended following the definition of #). O

except that the intermediate

Lemma 4. For ranked trees, DPWFA C FO+DTCF.

Proof. Consider a k-head twa A with n pebbles x,,...,z1, used in the order
given, i.e., z, is always placed on the bottom of the pebble stack. View A as con-
sisting of n+1 ‘levels’ A,, ..., A1, Ag such that Ay is a k-head twa with ¢ pebbles
Zy,...,r1, available for dropping and retrieving, whereas pebbles x,,..., 11
have a fixed position on the tree and .4, may test for their presence. Basically,
Ay acts as a twa that drops pebble xy, then queries A;_; where to go in the tree,
moves there, and retrieves pebble z, (from a distance).

The number of pebbles dropped can be kept in the finite control of A, so
we can unambiguously partition its state set as @ = @, U---U Q1 U Qq, where
Q¢ consists of states where ¢ pebbles are still available. Automaton A, is the
restriction of A to the states in Q.

For A, a matrix & is constructed with predicates ng ) for P, q € Q. These

predicates represent the single steps of Ay, so t | ¢(£)#(_ v) iff A, has a
nonempty computation from configuration [p, u] to configuration [¢, 7]. Note that

&) has additional free variables x,, ..., z¢4; that will hold the positions of the
pebbles already placed on the tree.

First assume that pebble x, has not been dropped. For each of its heads,
Ay may test the presence of pebbles ,,,...,xs11, and the node label and child
number of the current node, and then it may move each of its heads. These steps,
relations between the current and next configurations [p, @] and [g, 7], are easily
expressed in first-order logic. E.g., if the automaton can move head 5 to the first
child of a node with label o, while the node under head 6 has child number 2 and
does not contain pebble 41, then qﬁ,(f,)l (uw,v) is the conjunction of the formulas
labg (u[5]), (3u') edg,(u', u[6]), u[6] # wer1, edg, (u[5], v[5]), and u[j] = v[j] for
Jj # 5 (where u[i] denotes the ith component of @).

Additionally when ¢ > 1, A, may drop pebble z, at the position of head i
in state p, call Ay_1, and retrieve pebble x; returning to state ¢q. Such a ‘macro
step’ from configuration [p, @] to [¢,7] is only possible when there is a pair of
pebble instructions (p, drop,(x¢),p’) and (¢, retrieve(xy), ¢), such that A4,_; has



a (nonempty) computation from [p’, u] to [¢/, 7], i.e., t = q’)(e n# #(u,7). (3) Hence,

Ay can take that step iff the disjunction of gb( ql)#(u v) over all such ¢’ holds,
where the free variable z; in that formula is replaced by w[i], the position at
which the pebble is dropped.

The resulting step matrix #) is deterministic thanks to the determinism of
A and ¢~V Tt is in FO+DTCF by Lemma 3. The computational behaviour
of Ay is expressed by ®#  and that of A by the disjunction of all formulas

qﬁl(ffq)#(root7 root) with p initial and ¢ accepting. |

Combining Lemmas 2 and 4, we immediately get the main result of this
paper. Note that it includes the case of strings.

Theorem 5. For ranked trees, DPW*A = FO+DTCF.

As a corollary we may transfer two obvious properties of FO+DTC*, closure
under complement and union, to deterministic twa with nested pebbles, where
the result is nontrivial. In the proof of Lemma 2 we have constructed automata
that are always halting. As all our constructions are effective this means that
‘always-halting’ is a normal form for deterministic twa with nested pebbles. In
fact, the two closure properties follow rather directly from this normal form.
This is further studied with regard to the number of pebbles needed in [27].

When the twa is not deterministic we no longer can assure the determinism of
the formulas ¢ in the proof of Lemma 4. However, they are in FO+TCF¥. The
proof of Lemma 4 uses negation only on atomic predicates, to model negative
tests of the automaton (to check there is no specific pebble on a node). Since
negation is not used in the proof of Lemma 3, we obtain positive formulas,
allowing transitive closure only within the scope of an even number of negations
(see, e.g., [11,21]).

Conversely, for positive formulas there is also a result similar to Lemma 2.
For disjunction and existential quantification the automaton now uses nondeter-
minism in the obvious way. For transitive closure ¢ = ¢7 the Sipser technique is
not needed: A checks nondeterministically the existence of a path from vertex T
to vertex y in the directed graph determined by ¢;.

Denoting the positive restriction of FO+TC* by FO+posTC*, we thus ob-
tain a characterization for the nondeterministic case. We do not know whether
NPW¥A is closed under complement (i.e., whether ‘pos’ can be dropped from
this result).

Theorem 6. For ranked trees, NPW*A = FO+posTCF.

5 Single Head on Trees

Single-head tree-walking automata (with output) were introduced as a device for
syntax-directed translation [1] (see [17]). Quite recently they came into fashion
again as a model for translation of XML specifications [25, 28,23, 7].

3 Here we assume that instructions dropping and retrieving pebbles have no tests.



The control of a single-head tree-walking automaton is at a single node of
the input tree, i.e., sequential. Thus it differs from the classic bottom-up/top-
down tree automata, which are inherently parallel in the sense that the control
is fused/split for every branching of the tree.

The power of the classic model is well known: it accepts the regular tree
languages. For twa however, the situation was unclear for a long time. They
recognize regular tree languages only, but it was conjectured in [12] (and later
in [15,13,7]) that they cannot recognize them all. Recently this has been proved
for deterministic and nondeterministic twa in [5] and [6], respectively.

To strengthen the power of the single-head twa, keeping its sequential nature,
in [13] the single-head twa was equipped with nested pebbles. We showed there
that the tree languages accepted by such twa are still regular.

As observed before, DSPACE(logn) is the class of languages accepted by
single-head two-way automata with (nonnested) pebbles. Thus, for k = 1 (single-
head automata vs. unary transitive closure), our main characterization for tree
languages, Theorem 5, can be seen as a ‘regular’ restriction of the result of
Immerman characterizing DSPACE(logn); on the one hand only automata with
nested pebbles are allowed, while on the other hand we consider only unary
transitive closure, i.e., transitive closure for ¢(z, y) where x, y are single variables.
Note that unary transitive closure can be simulated in monadic second-order
logic (MSO), which defines the family REG of regular tree languages [10, 33].

In the diagram we compare the family FO+DTC! = DPW!A with several
next of kin. Lines without question mark denote proper inclusion. By LFO we
denote the family of languages definable in local first-order logic, i.e., dropping
the atomic formula x < y. The regular language (aa)* shows that DW!A ¢ FO.

Consider the binary trees that among their leaves have (exactly) three posi-
tions marked by a special symbol «a in such a way that there is an internal node,
the left subtree of which contains a single a, while its right subtree contains the
other two. This example from [5] shows that DW!A C NW!A and moreover that
FO ¢ DW!'A.

The example to prove REG € NW!A [6] shows even that FO ¢ NW!A, cf.
Example 1. Logical characterizations of DW!A and NW!A are given in [29],
using transitive closure in a restricted way. In [31] several logics for regular

” FO+posTCH = NPW!A

[FO+DTC' — DPW'A] (6]

FO 13]

T

LFO



tree languages are studied; it is stated as an open problem whether all regular
tree languages can be defined using monadic transitive closure, i.e., whether
FO+TC! = REG.

Some of the inclusions between the families of trees we have studied are not
known to be strict. In particular, can single-head twa with pebbles recognize
all regular tree languages? If, instead of with pebbles, they are equipped with a
synchronized pushdown or, equivalently, with ‘marbles’, then they do recognize
all regular tree languages [22, 15]. There are several other open questions. Is there
a hierarchy for tree languages accepted by (deterministic) twa with respect to the
number of pebbles these automata use? Are our ‘pointer’ pebbles more powerful
than the usual ‘physical’ ones? For nonnested pebbles the two types have the
same power, even when the number of pebbles is fixed [3].

6 Walking on Graphs

We generalize our results on trees (and strings) to more general families of graphs
(with both node and edge labels). To have a meaningful notion of graph-walking
automaton we only consider (connected) graphs with a natural locality condi-
tion: a node cannot have two incident edges with the same label and the same
direction. Trees over a ranked alphabet fall under this definition since we label
the edge from a parent to its i-th child by . Unranked trees satisfy this condi-
tion when represented with ‘first child” and ‘next sibling’ edges. Two-dimensional
grids satisfy it by distinguishing between horizontal and vertical edges.

A k-head graph-walking automaton with nested pebbles is like its relative for
trees, but it may additionally check whether one of its current nodes has an
incident incoming/outgoing edge with a specific label (generalizing the concepts
of child number and rank). Generally graphs do not have a distinguished node
(like the root for trees); thus for acceptance of an input graph we require that
the automaton has an accepting computation when started with all its heads on
any node of the input graph. Not all automata satisfy this requirement.

The first-order logic for graphs over the label alphabet X' has atomic formulas
lab,(x), o € X, for a node z with label o, edg,(z,y), 0 € X, for an edge from x
to y with label o, and x = y. We do not allow the predicate x < y, although for
trees that can be defined in first-order logic with deterministic transitive closure.

For arbitrary families of graphs the computation of an automaton can be
specified in logic, like in Section 4. (We keep the notation for the families.)

Lemma 7. For every family of graphs, DPW*A C FO+DTCF.

The other direction holds for all families of graphs for which there exists a
(fixed) single-head deterministic graph-walking automaton (with nested pebbles)
that can traverse each graph of the family, visiting each node at least once. Such
a family is called searchable, and the fixed automaton a guide.

Unranked (ordered) trees, without bound on the number of children of a
node, are a searchable graph family in their representation as binary trees. The
(single-head) automata in this representation may move to the first child or to



the next sibling of a node (and back), exactly as customary in the literature [28,
30] (albeit without pebbles). Rectangular (directed) grids, edges pointing to the
right or downwards, with edge labels distinguishing these two types of edges,
form another example of a searchable family. This can be generalized to higher
dimensions [2].

Cyclic grids, or toruses, where the last node of each row has an edge to the
first node of that row, and similarly for columns, can be searched using two
pebbles. We search the grid row-by-row: the first pebble marks the position we
start with (in order to stop when all rows are visited; this pebble is not moved),
the second pebble moves down in the first column to mark the position in which
we started the row (in order to stop when we finish the row; we then move the
pebble down to the next row until we meet the first pebble).

Theorem 8. For every searchable family of graphs, DPW*A = FO+DTCF.

The family of all graphs is not searchable, not even with nonnested pebbles
or with several heads. This follows from results of Cook and Rackoff [9].

It is open whether we can search a maze (a connected subgraph of a grid)
with a single head using nested pebbles. However with two heads we can search
a maze [4]. To cover this family we need to extend the notion of searchability: a
family of graphs is k-searchable if there is a deterministic guide as before, now
having k£ heads. We have to extend our automaton model with a new instruction
that moves a given head to a given pebble (like the ‘jumping’ instruction from
[9]). This is quite natural if we see pebbles as pointers, storing the address of a
node. With this assumption we get a result as above for k-searchable families.

Some unresolved questions were stated in Section 5. Another question is
whether our results can be generalized to alternating automata and the alter-
nating transitive closure operator of [20].
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