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Abstract

In practical applications it is common to have several conflicting objective functions
to optimize. Frequently, these functions are nondifferentiable or discontinuous, could
be subject to numerical noise and/or be of black-box type, preventing the use of
derivative-based techniques. In this paper we give an overview of some recent de-
velopments in Derivative-free Multiobjective Optimization. We introduce the basic
concepts and ideas commonly considered for the algorithmic development in Multi-
objective Optimization and review some recent classes of methods which do not make
use of derivatives. In particular, we will focus on Direct Search Methods (DSM) of
directional type and Evolutionary Multiobjective Optimization (EMO).
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1 Acronyms

Below we list, in alphabetic order, the acronyms used through the paper.

BIMADS Biobjective Mesh Adaptive Direct Search

CMA-ES Covariance Matrix Adaptation Evolution Strategy

DFO Derivative-free Optimization

DMS Direct Multisearch

DSM Direct Search Methods

EA Evolutionary Algorithms

EMO Evolutionary Multiobjective Optimization

EP Evolutionary Programming

ES Evolution Strategies

GA Genetic Algorithms

HypE Hypervolume Estimation Algorithm

KKT Karush-Kuhn-Tucker

MADS Mesh Adaptive Direct Search

MO-CMA-ES Multiobjective Covariance Matrix Adaptation Evolution Strategy

MOO Multiobjective Optimization

MULTIMADS Multiobjective Mesh Adaptive Direct Search

NSGA Nondominated Sorting Genetic Algorithm

NSGA-II Nondominated Sorting Genetic Algorithm, version 2

ROSEA Random Objective Selection Evolutionary Algorithm

SMS-EMOA S-Metric Selection Evolutionary Multiobjective Optimization
Algorithm

SPEA2 Strength Pareto Evolutionary Algorithm, version 2

VEGA Vector Evaluated Genetic Algorithm

2 Introduction

In practical applications, it is common to have multiple objective functions, which
need to be simultaneously optimized. Examples can be found in several distinct ar-
eas such as engineering design, feature selection, financial and management tasks
(e.g. [54, 55, 59, 73]). In the design phase of a new product, for example, the de-
signer does not only want to minimize the production cost, but additionally wishes
to maximize both the performance and the safety, minimize the conception time, and
maximize the life time of the product.
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The concept of Pareto dominance is of extreme importance in Multiobjective Opti-
mization (MOO), especially when some (or all) of the objectives are mutually conflict-
ing. In this case, we do not have, in general, a single point that yields the “optimum
value” for all the functions involved in the problem definition. Instead, we have a set
of points, named as the Pareto optimal set, such that selecting one point of this set
instead of another will always sacrifice the quality of at least one of the objectives
(while improving, at least, another).

In MOO, the goal is to identify such a set of points, from which the designer will
pick a final solution for the problem. The Pareto optimal set presents the different
alternatives, none being better than the others. The choice will rely on the designer
perspective of the problem.

The current paper gives an overview of some recent developments in Derivative-
free Multiobjective Optimization. These methods are appropriated for optimizing sev-
eral objectives, when computing the derivatives of some of the objective functions in-
volved is expensive, unreliable, or even impossible (which is a common situation in
real applications).

We consider two different classes of methods, representing major distinct approaches
that are currently being followed to tackle these problems: Direct Search Methods
(DSM) of directional type and Evolutionary Multiobjective Optimization (EMO) al-
gorithms. For each of these classes, we introduce the most relevant algorithms, point-
ing out strengths and weaknesses, and mentioning some of the improvements that
could be considered. We also remark the differences and similarities between the two
classes.

The paper is divided as follows. Section 3 introduces the concepts and terminol-
ogy commonly considered for algorithmic development in MOO, and necessary for
the following sections. Section 4 starts by presenting a brief review of DSM for single
objective optimization, moving then to MOO where details for two algorithms are pro-
vided, also considering its convergence properties. Section 5 respects to Derivative-
free Multiobjective Optimization methods with an heuristic and/or stochastic nature.
The section begins with an introduction to Evolutionary Algorithms (EA), first in
single objective optimization, after which classical EMO algorithms are discussed.
Recent trends in algorithmic development for this area can be found at the end of
the section. The paper concludes with some final comments and directions for future
research.

3 Concepts and Terminology in Multiobjective Opti-
mization

A Multiobjective Optimization (MOO) problem can be mathematically formulated as
(see [56] for a more complete treatment):
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min F (x) ≡ (f1(x), f2(x), . . . , fm(x))>

s. t. x ∈ Ω

where ∅ 6= Ω ⊆ Rn represents the feasible region, and m (≥ 2) the number of ex-
tended real-value functions fj : Ω ⊆ Rn → R ∪ {+∞}, j = 1, . . . ,m to minimize.
Recall that maximize fj is equivalent to minimize −fj . In the context of Derivative-
free Optimization (DFO), derivatives are not available for use, at least for one of the
components of the objective function. These components could be, for instance, the
result of an expensive computer simulation, sometimes subject to numerical noise,
which prevents the use of numerical techniques in the approximation of the corre-
sponding derivatives.

The feasible region, Ω, represents the set of points that verify the problem con-
straints. Constraints can be defined by mathematical expressions, for which deriva-
tives could be available for use, or, in the context of black-box optimization, be re-
garded as an oracle, which simply evaluates if a point is feasible or not, without pro-
viding any quantitative measure of its feasibility.

In MOO, a point in Rm with components corresponding to the minimum of each
objective function is named as an ideal point. A single feasible point in Rn whose
image under F corresponds to the ideal point does not always exist for a given MOO
problem and, even if it exists, computing it is generally a very hard task. When the
objective function presents several conflicting components, given a point correspond-
ing to values of the decision variables it could be impossible to find another one which
simultaneously improves the value of all the corresponding objective function compo-
nents. The concept of Pareto dominance is crucial for comparing any two points lying
in the feasible region.

Definition 3.1 Let x, y ∈ Ω be two points corresponding to values of the decision
variables of a MOO problem. The point x dominates y, being represented by x ≺ y,
if fj(x) ≤ fj(y), for all j ∈ {1, . . . ,m}, and fj(x) < fj(y), for at least one index
j ∈ {1, . . . ,m}.

Some authors state the previous definition by considering a strict partial order in
the cone Rm+ = {y ∈ Rm : y ≥ 0}. In this case, given two points x, y in Ω, we have
the following equivalencies:

x ≺ y ⇐⇒ F (x) ≺F F (y) ⇐⇒ F (y)− F (x) ∈ Rm+ \ {0}.

If, for x, y ∈ Ω, x ⊀ y and y ⊀ x then x and y are said to be nondominated (or
incomparable) points. A subset of Ω is said to be nondominated when any pair of
points in this subset is nondominated.

In single objective minimization the goal is to find a feasible point, x∗, such that
f(x∗) ≤ f(x), for all x ∈ Ω, meaning a global minimizer of the problem. Classifying
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a point as a global minimizer is a difficult task, even when the corresponding point
is located in an early stage of the optimization process. Thus the research is usually
focused in identifying local minimizers, i.e., points x∗ such that f(x∗) ≤ f(x), for
all x ∈ Ω ∩ N (x∗), where N (x∗) represents a neighborhood of x∗. The definition of
Pareto dominance is usually considered when adapting these concepts to MOO.

Definition 3.2 A point x∗ ∈ Ω is said to be a global Pareto minimizer of F in Ω if
there is no y ∈ Ω such that y ≺ x∗. If there exists a neighborhood N (x∗) of x∗
such that the previous property holds in Ω ∩ N (x∗), then x∗ is called a local Pareto
minimizer of F .

Rather than identifying a single point as a local Pareto minimizer, MOO algorithms
approximate the set of all feasible nondominated points, χP , referred to as the Pareto
optimal set. The image of χP under the function F is commonly named as the Pareto
front (or the Pareto frontier) of the problem.

4 Direct Search Methods (DSM)

Excluding the class of heuristics, Derivative-free algorithms for single objective opti-
mization are typically divided in three major groups (see [21] for more details): Direct
Search Methods (DSM), line-search algorithms for DFO, and trust-region interpola-
tion based methods. The last two classes are inspired by derivative-based optimiza-
tion. Line-search algorithms search for a better point along a particular direction, in
this case computed without considering derivatives (see, for example, the recent book
of Kelley [46]). Trust-region algorithms consider local approximation models for the
objective function, which are minimized inside a trust region in order to find a better
point. In DFO, since derivatives are not available for use, Taylor models are replaced
by interpolation based models, computed from sets of points with good geometrical
properties (see, for instance, [20, 58]). In the current section we will focus on DSM
since, to our knowledge, it is the only class for which advances have been made in
extending it to MOO.

4.1 A Short Review of Direct Search Methods (DSM)

Direct Search Methods (DSM) characterize by not considering any explicit or im-
plicit models for the objective function, neither attempting to use or approximate its
derivatives. Minimization is achieved through an iterative process of function evalu-
ation at finite sets of points, using the results to determine which new points should
be evaluated at the next iteration. Rather than a quantitative assessment of the objec-
tive function value, it is sufficient to be able to compare any pair of points and decide
which point presents a better value for the objective function.

In single objective optimization, the term Direct Search was first introduced in
1961, by Hooke and Jeeves [41], but the first methods that fall into this class appeared

5



before, in the fifties, with, for instance, the work of Fermi and Metropolis [33]. At this
early stage, the algorithmic development was mainly empirical, driven by practical
applications, and supported by geometrical considerations. Several algorithms were
proposed, being the simplex algorithm of Nelder and Mead [57] probably the most
well-known example. For a survey on DSM see, for instance, Kolda et al. [48].

It is only in the nineties, with the PhD thesis of Torczon and the subsequent works [66,
67], that the first convergence theory was established for some algorithms belonging
to this class, rising the interest of the numerical optimization community. Since then,
we have been witness to an intensive and fruitful period of research, covering both
aspects of theoretical development and practical applications.

Audet and Dennis [1] generalized the work of Torczon [67], by proposing a general
framework for the class of DSM of directional type, also designated as Pattern Search
Methods. Basically, they proposed to split each iteration of these algorithms in a
search step and a poll step. The first is optional for ensuring the convergence, being
typically used to improve the numerical performance. The implementation, at this
step, of distinct strategies causes different algorithmic instances, all of them belonging
to the class of DSM (see, for example, Custódio et al. [23] or Vaz and Vicente [68]).

The poll step consists of a local search around the current iterate, by testing scaled
poll directions associated with a positive basis or a positive spanning set. Positive
spanning sets are sets of vectors, whose nonnegative linear combinations generate a
given set. Positive bases are minimal positive spanning sets. Given any vector, a
positive spanning set for Rn is guaranteed to have at least one element within a 90◦

angular distance of the considered vector. In the context of DFO, where the location
of the gradient of the objective function is unknown, even when it exists, this property
is crucial to ensure the algorithmic convergence. For more details about the properties
of these sets of directions see Davis [24]. The scaling of the poll directions is achieved
by considering a step size parameter.

At a given iteration, once that a better point is found, the iteration is declared as
successful. If the better point is found at the search step then the poll step could
be omitted. When both steps fail to generate a better point, the iteration is named
as unsuccessful. At unsuccessful iterations, additionally to the function evaluation
performed at the search step, all the poll directions have been tested. The step size is
increased or maintained at successful iterations and obligatory reduced at unsuccessful
ones.

Different algorithmic instances could also result from considering different global-
ization strategies, associated to the type of decrease required for the objective function
value, when deciding if a better point was found. If only simple decrease is required,
the update of the step size parameter and the computation of the poll directions follow
strict rules in order to ensure that all the evaluated points lie in an implicit mesh, math-
ematically defined as an integer lattice. Also, the points evaluated at the search step
need to be restricted to this implicit mesh, or be projected on it. Requiring sufficient
decrease relaxes these conditions.

A summarized algorithmic description of a basic DSM of directional type is given
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in Algorithm 4.1.

Algorithm 4.1 DSM of directional type for single objective optimization

Initialization
Choose x0 ∈ Ω with f(x0) < +∞, an initial step size α0 > 0, 0 < β1 ≤ β2 < 1,
and γ ≥ 1. LetD be a (possibly infinite) set of positive spanning sets. Set k = 0.

For k = 0, 1, 2, . . .

1. Search step: Evaluate f at a finite set of points {xs : s ∈ S}. If a better
point xs is found, set xk+1 = xs, declare the iteration as successful and
skip the poll step.

2. Poll step: Choose a positive spanning setDk from the setD. Evaluate f at
the set of poll points Pk = {xk + αkd : d ∈ Dk}, stopping the evaluating
process if a better point is found. In this case, set xk+1 = xk + αkd and
declare the iteration as successful. Otherwise, declare the iteration as
unsuccessful and set xk+1 = xk.

3. Step size parameter update: If the iteration was successful then maintain
or increase the step size parameter: αk+1 ∈ [αk, γαk]. Otherwise decrease
the step size parameter: αk+1 ∈ [β1αk, β2αk].

The convergence analysis proposed by Torczon [67] for Pattern Search Methods as-
sumed the continuity of the derivatives of the objective function, even if these deriva-
tives were not known or used in the algorithmic definition. This could be a very strong
assumption, considering the features of the practical applications to solve. Audet and
Dennis [1] extended this convergence analysis by only requiring Lipschitz continuity
of the objective function. For that, they have recurred to Clarke’s calculus [18] and its
generalized directional derivatives, adapted by Jahn [45] to the constrained case. We
recall here the definition of Clarke-Jahn for a generalized directional derivative, since
it will be mentioned in the following subsections.

For a function f Lipschitz continuous near a point x, and d belonging to the in-
terior of the tangent cone to Ω at x, TΩ(x), the Clarke-Jahn generalized directional
derivative, computed at x in the direction d, is defined as:

f ◦(x; d) = lim sup
y → x, y ∈ Ω

t ↓ 0, y + td ∈ Ω

f(y + td)− f(y)

t
.

For directions belonging to the border of TΩ(x) the Clarke-Jahn generalized direc-
tional derivatives result from taking limits as f ◦(x; d) = limv∈int(TΩ(x)),v→d f

◦(x; v)
(see Audet and Dennis [2]).

Audet and Dennis [2] have also proposed a new class of DSM of directional type,
namely Mesh Adaptive Direct Search (MADS), for which convergence is guaranteed
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for general constrained problems. In this case, the algorithm makes use of a set of poll
directions which is asymptotically dense in the unit sphere. A step further was taken
by Vicente and Custódio [70], by extending the convergence analysis to particular
types of discontinuous functions (assuming that the objective function is directionally
Lipschitz with respect to a particular limit direction).

Nowadays, we would say that the general theory, supporting the convergence prop-
erties of DSM of directional type, is reasonably well understood. The major challenge
is to improve and analyse the efficiency of algorithms, allowing to tackle higher di-
mensional problems, and also moving to MOO. As we have mention before, carefully
designed search steps could be a tool for improving the numerical performance of the
solvers, but, given the nature of the poll step, parallel implementations should also be
considered.

One of the first parallel implementations of a DSM of directional type was Asyn-
chronous Parallel Pattern Search [42]. The use of asynchronous strategies could be
relevant when function evaluation presents considerably different times, for instance
due to distinct loads and/or speed of processors or distinct computational effort to
converge a numerical simulation. Following this work, several other serial implemen-
tations were parallelized (see, for instance, NOMAD [27] or PSwarm [69]), but this
topic is still subject of intensive research.

DSM for MOO are in the beginning of its development. Zhong et al. [74] pro-
posed an empirical algorithm based on compass search, but for which no convergence
analysis was provided. To our knowledge, only two DSM were proposed for general
Derivative-free Multiobjective Optimization, namely Multiobjective Mesh Adaptive
Direct Search (MULTIMADS) [4] and Direct Multisearch (DMS) [22], which will be
the subject of the following subsections.

4.2 Multiobjective Mesh Adaptive Direct Search (MULTIMADS)

In MOO, when the user is able to prioritize the different objectives defining the prob-
lem, an aggregation function could be considered, combining the several components
of the objective function into a single one. One possible approach to define this ag-
gregation function is to consider a weighted geometrical mean.

Let u =

(
max
x∈χP

f1(x),max
x∈χP

f2(x), . . . ,max
x∈χP

fm(x)

)>
be the Nadir point of the

problem and λj, j ∈ {1, . . . ,m} be fixed weights. The idea is to maximize the
weighted geometrical mean of the differences between the components of the ob-
jective function and this reference point:

max Πm
j=1(uj − fj(x))λj

s. t. fj(x) ≤ uj, j ∈ {1, 2, . . . ,m}
x ∈ Ω

If all the components of the objective function are convex, the solution of the previ-
ous problem would generate a point in the Pareto front, but would also have required
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the addition of m general constraints to the original problem (namely, fj(x) ≤ uj, j ∈
{1, 2, . . . ,m}). We also note that, typically, it is difficult to compute the Nadir point
of a MOO problem. Inspired by this approach, Audet et al. [3] developed BIMADS
(Biobjective Mesh Adaptive Direct Search), a DSM suited for biobjective optimiza-
tion.

BIMADS computes an approximation to the Pareto front of a given biobjective
problem by solving a sequence of single objective DFO problems, preserving im-
portant features of the original objective function. Each of these subproblems is de-
fined through an aggregation function Ψr(x) = φr(f1(x), f2(x), . . . , fm(x)), where
φr : Rm → R depends on a reference point r ∈ Rm.

The function Ψr should present the following characteristics: i) whenever all the
components of the objective function are Lipschitz continuous near a feasible point
x, Ψr should also be Lipschitz continuous near x; ii) if all the components of the
objective function are Lipschitz continuous near x ∈ Ω with F (x) < r componen-
twise, and if d belongs to the tangent cone to the feasible region computed at x,
whenever f ◦j (x; d) < 0, for all j = 1, . . . ,m then Ψ◦r(x; d) < 0. These properties
would allow to inherit the convergence results derived for the aggregation function to
F = (f1(x), f2(x), . . . , fm(x)), the function defining the original MOO problem.

Audet et. al. [3] proposed two different aggregation functions, which define dif-
ferent single objective formulations, for use in biobjective optimization. One of these
aggregation functions resembles the weighted geometrical mean approach, without the
m additional constraints, which are implicitly included in the single objective function.
These single objective formulations would be solved by a DFO solver, considering in-
creasingly stringent stopping criteria. Audet et. al. [3] selected MADS [2] as solver,
but other approaches could be taken.

At the beginning of the iterative process, MADS is used to minimize each compo-
nent of the objective function, inside the feasible region. The points evaluated during
the course of the optimization are used to initialize a list of feasible nondominated
points. This list is updated at each iteration by adding new feasible points, removing
dominated ones, and sorting the feasible nondominated points in ascending order of
f1 and descending value for f2. It represents the current approximation to the Pareto
front of the problem.

At each iteration, the ordering strategy allows to easily access the size of the gaps
between consecutive points lying in the approximation of the Pareto front and to select
a point corresponding to the largest ones. This point will be used to compute a refer-
ence point in the objective function space, which will be used in the single objective
formulation of the biobjective problem. Again, this formulation will be solved with
MADS. The underlying idea is to achieve an uniform coverage of the Pareto front,
even when it is represented by a nonconvex or a discontinuous function. If the cardi-
nality of the list of points equals one then each component of the objective function is
again minimized, with a stringent stopping criteria. At the end of each iteration, the
list of feasible nondominated points is updated with all the points evaluated during the
optimization process.
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Algorithm 4.2 presents a simplified description of BIMADS.

Algorithm 4.2 Biobjective Mesh Adaptive Direct Search (BIMADS)

Initialization
Use MADS to solve min

x∈Ω
fj(x), j ∈ {1, 2} and use the evaluated points to ini-

tialize a list of feasible nondominated points, L0. Order L0 by increasing order
of f1 and decreasing order of f2. Set k = 0.

For k = 0, 1, 2, . . .

1. Selection of a reference point: If |Lk| = 1, use MADS to again solve
min
x∈Ω

fj(x), j ∈ {1, 2}, with a stringent stopping criteria and skip the next

step. Otherwise, compute a reference point based on the largest gaps in
Lk.

2. Single objective formulation minimization: Use the reference point to
compute a single objective formulation, min

x∈Ω
Ψr(x), for the biobjective op-

timization problem. Use MADS to solve the single objective formulation.

3. Update of the list of feasible nondominated points: Use the feasible
evaluated points to update Lk by adding nondominated points and remov-
ing dominated ones. Order Lk+1 = Lk by increasing order of f1 and
decreasing order of f2.

Using generalized directional derivatives, Audet et al. [3] established an hierar-
chy of stationarity results for BIMADS, one of which is reproduced in the following
theorem.

Theorem 4.1 (Theorem 4.3 in [3]) Let F be Lipschitz continuous near a limit point
x∗ ∈ Ω, generated by MADS when applied to a single objective formulation min

x∈Ω
Ψr(x)

of the biobjective optimization problem, at some reference point r ∈ R2. Assume
that int(TΩ(x∗)) 6= ∅. Then, for any d ∈ TΩ(x∗) there exists j ∈ {1, 2} such that
f ◦j (x∗; d) ≥ 0.

This stationarity result, which can be regarded as a generalization of the Karush-
Kuhn-Tucker (KKT) conditions, states that there is no direction in the tangent cone
which is simultaneously descent for both components of the objective function. Thus,
it is a necessary condition for a point to be a Pareto (local or global) minimizer. If we
assume strict differentiability for both components of the objective function (meaning
that the corresponding Clarke generalized gradient is a singleton), then the previous
theorem can be recast as a KKT-type stationarity result, using the gradient vectors.

The ordering strategy considered for the list of feasible nondominated points is
crucial when identifying the reference points to be used in the single objective for-
mulations. Nevertheless, it is not easily generalized to more than two objectives. For
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allowing to solve MOO problems with more that two components in the objective
function, Audet et al. [4] had to consider a new set, the Tangent Hull, from which the
reference points would be selected.

Definition 4.1 Let z∗ be the minimum value of z =
m∑
j=1

sjfj(x), where sj are positive

scaling factors, for j ∈ {1, 2, . . . ,m}, and let B = {β ∈ Rm :
∑m

j=1 βj = 1, βj ≥ 0}.
The set {z∗βIm : β ∈ B}, where Im denotes the identity matrix of orderm, is refereed
to as the tangent hull.

At each iteration of MULTIMADS, the proposed solver for MOO, a convex com-
bination vector β ∈ B is generated to select a reference point, r, from the tangent hull,
which will be used to define a single objective formulation. The authors propose a new
single objective formulation which provides a more flexible optimality condition, by
allowing to select a reference point anywhere in the objective function space. Again,
MADS will be used to solve this single objective DFO problem and the evaluated
points, generated during the course of the optimization process, are used to update the
list of feasible nondominated points. Algorithm 4.3 resumes this procedure.

Algorithm 4.3 Multiobjective Mesh Adaptive Direct Search (MULTIMADS)

Initialization
Use MADS to compute xj∗ , by solving min

x∈Ω
fj(x), j ∈ {1, . . . ,m} and let

F∗ = (f1(x1∗), . . . , fm(xm∗)). Redefine fj = fj − F∗j , for j ∈ {1, . . . ,m}.
Use MADS to compute, z∗, by solving minx∈Ω

∑m
j=1 sjfj(x), where sj are posi-

tive scaling factors, ensuring that the components of the objective function have
similar magnitudes. Use the evaluated points to initialize a list of feasible non-
dominated points, L0. Set k = 0.

For k = 0, 1, 2, . . .

1. Selection of a reference point: Generate a reference point, r = F∗ +
z∗βIm, belonging to the tangent hull.

2. Single objective formulation minimization: Use the reference point to
compute a single objective formulation, min

x∈Ω
Ψr(x), for the multiobjective

optimization problem. Use MADS to solve the single objective formula-
tion.

3. Update of the list of feasible nondominated points: Use the feasible
evaluated points to update Lk by adding nondominated points and remov-
ing dominated ones.

Stationarity results, similar to the ones derived for the biojective optimization prob-
lem, can be stated.
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Theorem 4.2 (Theorem 3.4 in [4]) Let F be Lipschitz continuous near a limit point
x∗ ∈ Ω, generated by MADS when applied to a single objective formulation minx∈Ω Ψr(x)
of the multiobjective optimization problem, at some reference point r ∈ Rm. Assume
that int(TΩ(x∗)) 6= ∅. Then, for any d ∈ TΩ(x∗) there exists j ∈ {1, 2, . . . ,m} such
that f ◦j (x∗; d) ≥ 0.

In the original papers, where BIMADS and MULTIMADS were proposed, imple-
mentations were tested in some academic problems. The codes have also been used to
solve two real applications. BIMADS was used in the optimization of a portfolio se-
lection problem in the presence of skewness (see [73]) and MULTIMADS was tested
in the optimization of a styrene process (see [4]).

4.3 Direct Multisearch (DMS) for Multiobjective Optimization

Custódio et al. [22] did not want to aggregate any components of the objective function
or define priorities for the several objectives involved. The goal was to generalize all
DSM of directional type to MOO. Thus, each iteration of Direct Multisearch (DMS)
is organized around a search step and a poll step. Like in the works of Audet et
al. [3,4], the algorithm keeps a list of feasible, nondominated points, which represents
the current approximation to the Pareto front and from which poll centers will be
chosen. At each iteration, the new feasible evaluated points are added to this list and
the dominated ones are removed. An iteration is said to be successful if the iterate list
changes, meaning that a new feasible nondominated point was found. Otherwise, the
iteration is declared as unsuccessful.

Similarly to single objective optimization, the search step is optional and it is not
required for ensuring the convergence of the algorithm. It could be used, for instance,
to improve the numerical performance or to disseminate points across the Pareto front.
When no new feasible nondominated point is found at the search step, the poll step will
be executed. Convergence properties of the algorithm result from it. The algorithm
performs a local search around a selected poll center by testing directions belonging
to a positive basis, or a positive spanning set, scaled by a step size parameter. Again,
new feasible nondominated points are added to the current iterate list, being removed
the dominated ones.

As in single objective optimization, at the end of an unsuccessful iteration the cor-
responding step size parameters are decreased. For successful iterations the step sizes
are kept constant, or can even be increased.

Algorithm 4.4 corresponds to a short and concise description of DMS. Details
about the use of globalization strategies, like considering implicit meshes or imposing
a sufficient decrease condition on the objective function value to accept a new point,
are omitted.

Algorithm 4.4 Direct Multisearch (DMS) for MOO
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Initialization
Choose an initial step size parameter α0 > 0, 0 < β1 ≤ β2 < 1, and γ ≥ 1.
Let D be a (possibly infinite) set of positive spanning sets. Initialize the list
of feasible nondominated points and corresponding step size parameters L0 =
{(xi;αi) : i ∈ I}. Set k = 0.

For k = 0, 1, 2, . . .

1. Selection of an iterate point: Select an iterate point (xk;αk) ∈ Lk as the
current poll center and step size parameter.

2. Search step: Evaluate F at a finite set of points {xs : xs ∈ S}. Use
the feasible evaluated points to update Lk by adding nondominated points
and removing dominated ones. If Lk changed, declare the iteration as
successful and skip the poll step.

3. Poll step: Choose a positive spanning set Dk from the set D. Evaluate
F at the set of poll points Pk = {xk + αkd : d ∈ Dk}. Use the feasible
evaluated points to update Lk by adding nondominated points and remov-
ing dominated ones. If Lk changed, declare the iteration as successful.
Otherwise, declare the iteration as unsuccessful and set Lk+1 = Lk.

4. Step size parameter update: If the iteration was successful then maintain
or increase the corresponding step size parameters. Otherwise decrease
the corresponding step size parameters.

This algorithmic framework is very general and encompasses several variants. Dif-
ferent algorithmic instances result from considering different strategies for the initial-
ization of the iterate list (line sampling, random sampling, Latin hypercube sampling,
or others), from the definition of a search step and from implementing an ordering
strategy for the list of feasible, nondominated points, before selecting the new poll
center, just to name a few. Concerning the latter, in an attempt to reduce the gaps
between consecutive points lying in the current approximation to the Pareto front, the
authors proposed the use of a spread metric. Gaps are measured componentwise and
points are ordered according to the highest values of it.

Again, considering generalized directional derivatives, an hierarchy of stationarity
results is derived for DMS. In the next theorem, we reproduce one of the results.

Theorem 4.3 (Theorem 4.9 in [22]) Let F be Lipschitz continuous near a limit point
x∗ ∈ Ω generated by DMS, and assume that int(TΩ(x∗)) 6= ∅. If the set of re-
fining directions for x∗ is dense in TΩ(x∗), then for any d ∈ TΩ(x∗) there exists
j ∈ {1, 2, . . . ,m} such that f ◦j (x∗; d) ≥ 0.

Refining directions are limits of normalized directions, associated with feasible
poll points, corresponding to unsuccessful iterations (for more details, see Audet and
Dennis [2]).
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In [22] the authors have also performed an intensive numerical comparison be-
tween DMS and eight other solvers commonly used in Derivative-free Multiobjective
Optimization. In particular, it was tested BIMADS (see Subsection 4.2) and NSGA-II
(see Subsection 5.3), the latter a MOO solver based on genetic algorithms. The test
set included 100 bound constrained optimization problems, among of which there
were convex, nonconvex, and discontinuous Pareto fronts. As comparison indicators
the authors considered the purity metric (see [9]), which measures the percentage of
points generated by a given solver in a reference Pareto front. For each problem, the
reference Pareto front is built by gathering the results obtained by running the total-
ity of the solvers considered in the computational experiments and removing all the
dominated points. In [22], the authors have also considered two spread metrics, one
of them generalizing the spread metric proposed in [26] to objective functions with
more than two components. For the metrics considered, DMS has proved to be highly
competitive with the remaining solvers, even without the implementation of a search
step.

5 Evolutionary Multiobjective Optimization (EMO)

Evolutionary Algorithms (EA) are stochastic search and machine learning heuristics,
inspired by theories of biological evolution, most prominently by the so-called modern
evolutionary synthesis that combines natural selection and genetics (see [29]). Tradi-
tionally, EA have been categorized into three subfields: Genetic Algorithms (GA) [36]
(mainly binary representations), Evolution Strategies (ES) [14] (mainly continuous
representations) and Evolutionary Programming (EP) [34] (arbitrary representations).
Nowadays, the boundaries between these subfields became more fluid and the methods
are often grouped together using the term Evolutionary Algorithms (see [7]).

EA are used for machine learning and as simulation models in biology [36], but
their major field of application is surely systems optimization. This class of methods
does not require derivatives of the functions defining the problem and it is relatively
robust and flexible for solving nonlinear optimization problems, due to the stochastic
search operators involved in the algorithmic definition. Empirical results suggest that
on nonsmooth and nonconvex problems EA can outperform classical deterministic
methods (see [65]). For continuous optimization, advanced EA, such as the Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES) [38], are nowadays considered
to be state-of-the-art methods.

Evolutionary Multiobjective Optimization (EMO) applies EA for the solution of
MOO problems. After first pioneering work in the eighties [64] and in the early
nineties [35,49], these methods received strong attention during the last two decades [19].
What has emerged as a side-branch of the evolutionary computation community is
today considered as a more independent field of research, at the intersection of Evo-
lutionary Algorithms, Metaheuristics, and Multicriteria Decision Making. In addi-
tion, EMO methods became popular for solving practical problems in multiobjective
optimization (see, e.g., Branke et al. [16]). The major focus in EMO has been the
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computation of finite approximations to Pareto optimal sets and Pareto fronts. Some
algorithms, such as the second versions of the Nondominated Sorting Genetic Algo-
rithm (NSGA-II) [26] and the Strength Pareto Evolutionary Algorithm (SPEA2) [76],
became popular techniques for this task and will be reviewed here. We will also re-
view more recent trends, exemplified by algorithms such as the hypervolume-based S-
metric Selection EMO algorithm (SMS-EMOA) [30] and the Multiobjective CMA-ES
(MO-CMA-ES) [43], the latter specially designed for solving continuous optimization
problems.

5.1 Single Objective Evolutionary Algorithms (EA)

In EA mathematical objects are often referred to by biological metaphors, such as
individual (solution), population (tuple of solutions), and fitness (objective function
value or rank of an individual, within a population).

This adds a layer of abstraction to the algorithmic description, which can present
different instantiations. As an example, an individual could represent a point in {0, 1}n,
a point in Rn, or even an instance of a dynamic data-structure. In the sequel, however,
the focus will be on continuous search spaces, meaning that individuals are repre-
sented as points in Rn and populations are considered to be fixed-cardinality multisets
of individuals.

Algorithm 5.1 describes a generic EA for single objective optimization. Using the
subsequently discussed genetic operators, the stochastic transition is designed in such
a way that the expected value of the objective function of the population individuals
improves over time. Within the framework of EA one distinguishes between parent
populations Xt (of size µ > 0) and offspring populations Ot (of size λ > 0), at
iterations t ∈ {0, 1, 2, . . . }. The iteration counter is denoted by t to emphasize that
{Xt}t∈N could be regarded as the trajectory in (Rn)µ of a stochastic process indexed
in time. The offspring population, Ot, is an intermediate population that is generated
by the variation operators (recombination and mutation) from the individuals of the
parent population Xt. The next generation parent population, Xt+1, will be selected
from the union of the parent and offspring populations, considering the fitness of the
individuals.

Algorithm 5.1 Generic Evolutionary Algorithm (EA)

Initialization
Define all required algorithmic parameters (parent population size (µ), number
of recombination partners (ρ), number of offsprings (λ), mutation strength (σ),
etc.) and set the generation (iteration) counter t = 0. Initialize the parent
population, X0, and assign a fitness to each of its µ individuals, based on the
corresponding objective function value (and, possibly, other criteria).

For t = 0, 1, 2, . . .

15



• Mating selection: Select ρ individuals in Xt, that will serve as ‘templates’
for the individuals in Xt+1.

• Recombination: Combine the information of the selected individuals (e.g.
by means of random crossover or of averaging) in order to create a new
population, Ot, of λ offspring individuals.

• Mutation: Perturb (some of) the offspring individuals in Ot by means of
small random modifications.

• Fitness assignment: Evaluate the fitness of each offspring individual, con-
sidering the corresponding objective function value (and, possibly, other
criteria).

• Environmental selection: Select individuals from the offspring popula-
tion Ot (and, possibly, also from the parent population Xt), in order to
form the next generation parent population Xt+1 (of size µ).

The initialization of an EA is typically done in an uniform random manner, with re-
spect to the space of feasible solutions Ω. Important instantiations of mating selection
are:

• Random selection: randomly selecting parents, in which case the same parent
can be repeatedly chosen. This selection type is typically applied in ES [14].

• Tournament selection: two (or more) individuals are selected randomly from
the parent population and the individual with the best fitness will be kept. This
selection type is typically applied in EP [34].

• Roulette wheel selection: Individuals are selected with a probability or fre-
quency that is proportional to their fitness or rank in the population. This selec-
tion type is typically applied in GA [36].

Besides the selection of individuals to be recombined and/or mutated, the environmen-
tal selection is used to compute the population Xt+1 from the offspring population Ot,
and also possibly from Xt. The (µ + λ)-selection and the (µ, λ)-selection strategies
are distinguished:

• (µ+λ)-selection: The best µ solutions in the union Xt∪Ot are selected. Because
the size of this union equals µ + λ, this selection is termed (µ + λ)-selection.
For instance, a (µ+2)-selection denotes a selection of the µ best solutions from
the union of a set of µ parents and a set of 2 offsprings.

• (µ, λ)-selection: The best µ solutions among the λ offspring solutions, Ot, are
selected, meaning that the previous parent population Xt is not considered in
the selection. In this case µ ≤ λ must hold.
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Offspring individuals are generated by means of recombination and mutation op-
erators. Recombination is used to combine information of two or more parents in
order to form an offspring, for instance by averaging or by crossover. Theoretically, it
has been shown that for decomposable functions recombination can enhance the fre-
quency of parts of the individuals that contribute to a good fitness [36] and decrease
deteriorating effects of mutation [14]. Recombination also serves to create diversity
and to exchange information across a population. In the context of EMO, it can create
solutions that lie in the gaps between existing solutions.

Mutation modifies an individual by a small random perturbation. For instance, a
Gaussian mutation of a given individual x ∈ Rn corresponds to:

x′ = x+ σz with z ∼ Normal(0,Σ),

where Normal(0,Σ) denotes a multivariate Gaussian distribution with mean 0 and co-
variance matrix Σ, and σ is a scaling factor. In ES it is common to adapt the scaling
factor, σt, across the different generations. For this, several control schemes were
proposed. One of these proposals is based on success-rates (e.g. [14, 44, 65]). In ES
following a 1/τ th-success rule means that σ is multiplied by a constant 0 < ξ < 1,
if the success-rate after a fixed epoch of c > τ iterations is below 1/τ , and divided
by ξ otherwise. A value of τ = 5 proved to be a good default setting for a range of
problems and is used as a standard setting – hence the name 1/5th success rule [65].
Alternatively, mutative self-adaptation and derandomized self-adaptation are widely
used. Here σ (or even Σ itself) gets part of the individual and undergoes an evolution-
ary process. For details, see [14] and [38], respectively.

The CMA-ES [38] also adapts the covariance matrix Σ during the generations, ad-
justing the mutation to the local quadratic form of the objective function. For this,
it integrates the sample path from the history of the individuals (evolution path). In
particular, for continuous objective functions with an high condition number and cor-
relation between the optimization variables, the CMA-ES is often preferred to other
ES instantiations.

The behaviour of almost all evolutionary algorithms can be modelled as an homo-
geneous Markovian process with kernelK(X, A), describing the transition probability
of a given population X ∈ (Rn)µ entering in some set A ⊂ (Rn)µ in the subsequent
generation. For instantiations of transition kernels for EA see [61].

Based on this, conditions for complete convergence of EA can be established.
Complete convergence is a strong type of probabilistic convergence. Lucacs [53] de-
fines it as:

Definition 5.1 (Complete convergence) Let Y denote a random variable (which might
as well be a constant) and {Yt}t∈N a sequence of random variables defined on a prob-
ability space (B,A, P ). Then {Yt}t∈N is said to converge completely to Y , if for any
ε > 0:

lim
t→∞

t∑
i=1

P{|Yi − Y | > ε} <∞.
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Next, let us define b : ℘((Rn)µ) → R as the function that assigns to a population
in (Rn)µ the objective function value of its best individual. Moreover, for ε > 0
and f∗ the global minimum of the objective function f (provided it exists), we define
Aε = {X ∈ (Rn)µ | b(X) ≤ f∗+ε}. Using these definitions, we can state the following
result.

Theorem 5.1 (Corollary 6.3 in [61]) An EA whose Markovian kernel satisfies the con-
dition K(X, Aε) ≥ θ > 0, for all X ∈ Acε = (Rn)µ \ Aε, and K(X, Aε) = 1 for any
X ∈ Aε, for any ε > 0, will converge completely to the global minimum of the real
valued function f , regardless of the initial distribution of the individuals.

It is interesting to note that the condition on the Markovian kernel is satisfied for
ES using a (µ+λ)-selection strategy, considering a positive definite covariance matrix
Σ and bounded scaling factors 0 < σmin < σ < σmax <∞, provided they are applied
to bound constrained problems with a continuous objective function (see [61]).

On simple quadratic functions, Beyer [13] derived expressions showing a linear
convergence rate of ES with optimally adapted step sizes, using a (µ + λ) or (µ, λ)-
selection strategies, for a dimension n → ∞. For a summary, see also [14]. Em-
pirically, it was shown that most of these results already hold for n of moderate size.
Jägersküpper [44] proved that, on quadratic forms, ES using a (1 + 1)-selection com-
bined with a 1/5th success rule for step-size adaptation converge linearly with over-
whelming probability, that is, the probability that the distance to the optimum does not
halve in O(n) iterations approaches zero with exponential rate in n.

More than analysing the convergence properties of classical EA, proposals were
made to change the design of some methods belonging to this class, in order to en-
force convergence to a stationarity point. Hart [40] introduced a variant of ES, called
Evolutionary Pattern Search, which generalizes the Stochastic Pattern Search method
proposed in [39]. The new algorithm includes in the mutation operator a set of search
directions which forms a positive basis for Rn. It uses update schemes similar to
the ones of DSM, but opposed to them considers a population of search points and
randomizes some of the procedures.

Recently, Diouane et al. [28] have also proposed a slightly modified version of CMA-ES,
and other similar ES instantiations. For objective functions which are locally Lipschitz
continuous, they have proved the convergency for a Clarke stationarity point, indepen-
dently of the points considered in initialization. The proposed modification consists
in strategies to update the step size parameter based on different sufficient decrease
conditions.

Besides these theoretical results, we note that in the field of EA, systematic experi-
mental research plays an important role in the algorithmic development. See [10], for
a treatise.
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5.2 An Overview on Some (Classical) Evolutionary Multiobjective
Optimization (EMO) Algorithms

Shifting the attention from single to multiobjective EA means, in the first place, to
focus in the selection operator design. While in single objective optimization selec-
tion procedures can be directly based on the objective function value and in rankings
depending on it, in MOO, where there are partially ordered objective function vectors,
fitness assignment or ranking is not that straightforward. Three main alternatives can
be identified in the EMO literature, which were proposed in the given order:

1. Scalarization-based approaches: The objective function vectors are aggre-
gated into a single scalar value, using simple weighting or an utility function.
In order to compute different solutions, the parameters of the utility function
are dynamically or randomly changed. Examples are the Vector Evaluated Ge-
netic Algorithm (VEGA) [64] and the Random Objective Selection Evolution-
ary Algorithm (ROSEA) [62], the latter based on an earlier framework proposed
by [49] for multiobjective ES.

2. Nondominance and diversity approaches: Solutions are computed based on
dominance and diversity. Often, nondominance is prioritised to diversity to
achieve convergence to a set of Pareto optimal solutions. Examples of this ap-
proach are the Nondominated Sorting Genetic Algorithm (version 2) NSGA-II [26]
and the Strength Pareto Evolutionary Algorithm (version 2) SPEA2 [76].

3. Indicator-based approaches: In this case, a selection is performed among sets,
favouring the ones which present a better performance indicator. This perfor-
mance indicator should measure the quality of a set as an approximation to
the Pareto front of the problem. Indicator based evolutionary algorithms were
suggested as an algorithm class in [75], being the hypervolume indicator of-
ten chosen as performance indicator. The Hypervolume Estimation Algorithm
HypE [8] and the S-Metric Selection Evolutionary Multiobjective Optimization
Algorithm SMS-EMOA [30] are instantiations of indicator based evolutionary
algorithms. The same happens for a common variant of the Multiobjective Co-
variance Matrix Adaptation Evolution Strategy MO-CMA-ES [43, 72].

Aggregation based methods were described in the first pioneering papers on EMO.
In VEGA [64], weights of the objective functions are randomly changed, promoting
diversity inside the population and its better coverage of the Pareto front. With the
same purpose, ROSEA [62] changes randomly the objective function used in the se-
lection. Rudolph [62] analysed the convergence properties of ROSEA for a quadratic
MOO problem, establishing a sublinear convergence rate. The major drawback of
these aggregation based approaches relies on their inability to capture concave parts
of the Pareto fronts. Thus, they have been widely abandoned in the EMO field.

The selection mechanisms incorporated in the NSGA, its successor NSGA-II, and
SPEA2 are prominent examples of the second selection principle: a combination of
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nondominance and diversity. Basically, these algorithms differ in the ranking, based
on nondominance level, and the subsequent diversity measurement. A more detailed
discussion follows in Subsection 5.3. Other algorithms that fall into this class are
the Pareto Archived Evolution Strategy (PAES) [47] and the ε-MOEA [25], which
partition the objective function space into grid cells to measure diversity. A stronger
focus on variation/sampling operators design gave rise to algorithms such as the Mul-
tiobjective Estimation of Distribution Algorithm [15], the Differential Evolutionary
Multiobjective Optimization (DEMO) [60] and the Multiobjective Covariance Matrix
Adaptation Evolution Strategy (MO-CMA-ES) [43, 72].

The SMS-EMOA [30] and HypE [8] can be seen as instantiations of indicator-
based methods, the design of which is directly governed by a performance indicator.
Because this design principle is a recent trend in the advancement of EMO algorithms,
we will devote Subsection 5.4 to it. The hypervolume indicator was also proposed as a
selection criterion in MO-CMA-ES [43, 72]. However, the main contribution present
in this method is to generalize the single objective CMA-ES to MOO. We will discuss
it in more detail in Subsection 5.5.

Another line of algorithmic designs has focused on interacting models of evolution
and co-evolution, inspired by the predator-prey approaches. Here, different objec-
tives are represented by different prey-individuals, that simultaneously perform the
selection on different aggregated objective functions (see [37,50]). Though these bio-
inspired algorithms provide flexibility and robustness in practical settings [37], their
convergence properties remain widely unexplored.

5.3 Combining Dominance and Diversity: NSGA-II and SPEA2

NSGA-II [26] is probably the most commonly used EMO algorithm, partially due to
its straightforward, yet effective, design. NSGA-II is a GA considering a (µ + µ)-
selection strategy, and binary tournament for mating. Its main innovation, as opposed
to single objective optimization algorithms, consists in ranking solutions based on a
vector valued fitness function, and thereby at the same time considers domination and
diversity. Ranking is done in two steps:

1. Nondominated sorting: In this step the union of the parent and offspring pop-
ulations Q ∈ Ωµ+µ is partitioned into Q(1), . . . , Q(k), where Q(1) is the set of
nondominated solutions in Q, and Q(i+1) is recursively defined as the nondom-
inated set of Q − ∪ij=1Q

(j), for i = 1, 2, . . .. Nondominated sorting will result
in 0 < κ ≤ |Q| nonempty sets Q(1), . . . , Q(i), . . . ,Q(κ). The index i of the set
Q(i) determines the nondominance level of the solutions in Q(i).

2. Crowding distance sorting: Each set Q(i), i ∈ {1, . . . , κ}, obtained by non-
dominated sorting, can be further sorted by means of the crowding distance. The
crowding distance measures the contribution of a solution to the diversity of a
population – the higher the crowding distance the better the solution. For some
q ∈ Q(i) it is given by crowd(q) =

∑n
d=1(∆+

d (q,Q(i)) + ∆−d (q,Q(i))), where
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∆+
d (q,Q(i)) denotes the next higher d-th coordinate of a point q′ ∈ Q(i) − {q}

and ∆−d (q,Q(i)) denotes the next lower d-th coordinate of a point q′′ ∈ Q(i) −
{q}.

A crucial design principle of NSGA-II is to prioritize on the nondominance level.
Only in case of incomparable solutions it favours those that better contribute to di-
versity. In common implementations of NSGA-II either classical genetic operators
are used or – in the canonical version for continuous search spaces - simulated binary
crossover in combination with polynomial mutation is considered. For details on these
operators we refer to the literature [26].

Although NSGA-II is an elitist algorithm, it was shown that it can deteriorate,
meaning that after some generations the set of approximate solutions might be strictly
worse then the previous population [31]. Nevertheless, for population with larger sizes
the effects of deterioration tend to disappear [31]. In fact, in a wide range of bench-
marks and application problems, NSGA-II was reported to yield good approximations
of Pareto fronts, in particular for the 2-D case. A similar algorithm to NSGA-II that
also enjoys wide popularity is SPEA2 [76]. Instead of using nondominated sorting
for ranking in the first step, it computes the strength of individuals, by counting how
many other individuals it dominates and by how many individuals it is dominated.
A clustering method is then used as a selection criterion among individuals of equal
strength, in order to promote diversity.

5.4 Indicator-based Approaches: SMS-EMOA and HypE

In the algorithms belonging to this class, selection strategies use performance indi-
cators to measure the quality of different sets, as approximations to the Pareto front
of a given problem. To do it, without the knowledge of the actual Pareto front, the
hypervolume indicator was suggested, due to its favorable properties [77]. Given a
reference point r ∈ Rm, that is dominated by all the approximations considered for
the Pareto front (or at least by the actual Pareto front of the problem), the hypervolume
indicator measures the size of the space that is dominated by the set approximating the
Pareto front and upper bounded by the considered reference point.

Definition 5.2 (Hypervolume indicator) The hypervolume indicator (or S-metric, from
‘Size of space covered’) for some (approximation) set A ⊂ Rm and a reference point
r ∈ Rm that is dominated by all the points in A is defined as:

HI(A) = Vol{b ∈ Rm|b ≤ r ∧ ∃a ∈ A : a ≤ b} = Vol(∪a∈A[a, r])

Here Vol(.) denotes the Lebesgue measure of a m-dimensional set of points, and [a, r]
denotes the interval box with lower corner a and upper corner r.

In 2-D this is simply the covered area, and in 3-D the covered volume (see Figure 1
for examples). For reviewing some important properties related to this indicator, lets
us introduce a comparison operator between sets.
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Figure 1: Hypervolume indicator in two dimensions for a set A = {a1, ..., a4} ⊂ R2

(left) and in three dimensions for a set Y = {y1, . . . , y5} ⊂ R3 (right).

Definition 5.3 Given two nondominated sets A and B, A is better than B, which is
represented by A ≺ B, if

∀b ∈ B : ∃a ∈ A : a ≤ b (componentwise) and ∃b ∈ B : ∃a ∈ A : a ≺ b.

The hypervolume indicator is, up to an isomorphism, the only known indicator that
presents the following monotonicity property.

Lemma 5.1 (Zitzler et al. [77]) LetA andB be two nondominated sets with the prop-
erties A ≺ B and ∀x ∈ A ∪ B : x ≺ r, where r is the reference point used in the
hypervolume computations. Then HI(A) > HI(B).

This property makes sure that strict improvements of approximating sets will result in
an increment of the hypervolume. Moreover, the following property can be established
for the hypervolume indicator.

Lemma 5.2 (Zitzler et al. [77]) Let≺ be defined as in Definition 5.3, andA andB be
two nondominated sets with the property ∀x ∈ A∪B : x ≺ r, where r is the reference
point used in the hypervolume computations. If HI(A) > HI(B) then B 6≺ A.

Basically, the lemma states that measuring by means of the hypervolume indicator
will never favour an approximation set that is strictly worse than the another one.
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This implies that search strategies that generate a sequence of approximation sets or
populations with monotonously increasing hypervolume will not deteriorate [31].

Indicator-based EMO algorithms use indicators that measure the quality of the
eventually obtained set to directly guide the selection [75]. The idea is instanti-
ated in the S-Metric Selection Evolutionary Multiobjective Optimization Algorithm
(SMS-EMOA) [30], which considers a (µ + 1)-selection scheme. Like in NSGA-II,
the ranking procedure could be subdivided into two steps.

• Nondominated sorting: The first step is nondominated sorting (like discussed
for NSGA-II), giving rise to partitions of equal nondominance level Q(1), . . . ,
Q(κ).

• Hypervolume-based ranking: The partition with worst nondominance level,
namely Q(κ), is reduced to a subset of |Q(κ)| − 1 solutions. The subset that
covers the biggest hypervolume survives.

The design of the algorithm makes sure that, regardless of the stochastic realization,
the hypervolume of the approximating set will either grow or remain the same. From
Lemma 5.2 it can be concluded that the search cannot deteriorate to strictly worse
Pareto front approximations, as this might be the case in NSGA-II and SPEA2.

The choice of a (µ+1)-selection scheme is motivated by the efficiency of the subset
selection for this special case. It suffices to delete the solution in Q(κ) that presents the
smallest contribution to the corresponding hypervolume. The contribution of a point
a ∈ A ⊂ Rm to the hypervolume defined by the set A is measured by:

∆HI(a,A) = HI(A)− HI(A− {a}) (1)

The computation of all contributions can be accomplished in asymptotically optimal
time O(|A| log |A|), for m = 2 and m = 3 [32]. For higher dimensions, up to now,
only algorithms with polynomial, but superquadratical, running time are known [11].
This limits the applicability of SMS-EMOA to problems with only a moderate number
of objective functions.

Recently, several results have been obtain on the distribution of points that maxi-
mizes the hypervolume indicator. A set is said to be µ-optimal relatively to the hy-
pervolume indicator if it presents the biggest hypervolume among all sets of size µ. It
has been shown that, if the size of the actual Pareto front is equal or greater than µ,
µ-optimal sets consist of only Pareto optimal points. Moreover, in 2-D, when µ→∞,
the set of points maximizing the hypervolume indicator will form a dense subset on
the Pareto front [6].

Recent studies have shown that in some cases the SMS-EMOA is not guaranteed to
converge to a µ-optimal set (e.g. [5]). This results from its (µ + 1)-selection scheme.
To guarantee convergence to a µ-optimal set, a (µ + λ)-selection with µ ≥ λ that
selects the subset of size µwith maximal hypervolume is both sufficient and necessary.
For m = 2, an algorithm for subset selection with running timeO(µ3) is available [5],
but for m > 2 only algorithms with exponential running time are known.
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In contrast to SMS-EMOA, the Hypervolume Estimation Algorithm (HypE) [8]
considers a general (µ + λ)-selection scheme, where λ can be bigger than 1. To
accomplish practical feasible running times, instead of using exact computation in
the subset selection procedures, it applies Monte Carlo sampling for computations
related to the hypervolume indicator and a modified fitness assignment. Instead of
only considering contributions of single points to the hypervolume indicator, it also
considers joint contributions of two or more points to this indicator. The volume of
the subspace that is jointly dominated by k points is assigned in equal proportions to
the points that dominate it.

As the computational complexity of the hypervolume indicator grows exponen-
tially with the number of objective functions [17], and Monte Carlo approximation is
less affected by dimensionality, HypE is considered to be a promising algorithm for
MOO with an high number of components for the objective function [8].

First convergence results in hypervolume-based optimization were recently ob-
tained. Beume et al. [12] introduced an analysis method that allows to generalize
convergence results for single objective EA to EMO algorithms. Using this method,
it has been proved the convergence of SMS-EMOA with a (1 + 1)-selection, and of a
modified version of SMS-EMOA with a (µ + 1)-selection, that works with multiple
reference points and considers tournament selection based on pairwise comparisons.
In particular, Beume et al. [12] extended the convergence results of Rudolph [61] and
Jägersküpper [44], discussed in Subsection 5.1, to these two algorithms.

Whereas earlier theoretical research focused on either very simple discrete prob-
lems [51] or in algorithmic designs that do not address diversity maintenance [63],
the findings of Beume et al. [12] can be regarded as first results towards convergence
analysis for common EMO algorithms in continuous problem classes of practical rel-
evance. For now, results are still confined to particular, uncommon algorithmic instan-
tiations, and more general convergence results would be desirable.

5.5 Multiobjective CMA-ES

While the previously discussed NSGA-II, SPEA2, SMS-EMOA, and HypE can also
be used in discrete search spaces, the MO-CMA-ES [43] is an EMO method that
is especially designed for continuous optimization, since it is intended to generalize
the single objective CMA-ES to MOO. As in SMS-EMOA, it uses a ranking strat-
egy which is firstly based on nondominated sorting and considers contributions of the
hypervolume indicator (see Definition 5.2) as a secondary ranking criterion. It estab-
lishes a complete ordering on the population by prioritising nondominance level to
hypervolume contribution. Consider a set Q(i), for some i ∈ {1, . . . , κ}, with more
than two solutions of equal dominance level. The solution q with the minimal hy-
pervolume contribution is ranked worst, then the solution with minimal hypervolume
contribution is detected from the set Q(i) − {q} and assigned the second worst rank,
and so forth.

The CMA-ES and MO-CMA-ES work with a Gaussian mutation operator, for
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which the corresponding covariance matrix Σ is adapted by means of an elaborated
scheme that depends on a evolution path and a success probability. A success is de-
clared if an offspring is selected as one of the parents of the next generation. In case
of success the scaling factor σ is decreased, while otherwise it is increased. The path
of past evolution steps that led to an offspring is integrated, in order to approximate
a conjugate direction that is used to scale and rotate the shape of the distribution rep-
resented by the covariance matrix Σ. This way, the mutation distribution is adapted,
allowing to increase the progress rate for near-quadratic forms with high condition
numbers.

Updates of the covariance matrix require, at least, quadratic time. Despite this large
computational effort, the MO-CMA-ES is an interesting alternative to algorithms with
a fixed covariance matrix, in cases where the scale of the variables largely differs and
search proceeds in directions diagonal to the main coordinate axes.

A state-of-the-art instantiation with a detailed description of the update procedures
of the MO-CMA-ES is found in [72]. So far, a theoretical convergence theory is
not available for MO-CMA-ES, though there is empirical evidence of its good per-
formance [43]. The improvement of the MO-CMA-ES is still a topic of active re-
search. Interesting developments include the introduction of advanced recombination
schemes [71], step-size adaptation schemes [72] and replacement of random mating
selection by a selection scheme motivated by reinforcement learning [52].

6 Final Remarks

This paper presented two major classes of algorithms suited for Derivative-free Mul-
tiobjective Optimization, namely multiobjective DSM and EMO algorithms.

The attentive reader will have noticed some commonalities in the design of DSM
and EMO algorithms. Searching in the neighborhood of existing solutions in order to
find improvements is a fundamental design principle in both classes, and also the use
of adaptive step sizes to zoom into local optima is featured in all DSM and in some
EMO methods, most notably in MO-CMA-ES. In addition, besides Pareto nondomi-
nance, diversity maintenance strategies are used in both fields as a secondary guidance
for search. Compare, for instance, the similarity in the design of DMS (using a com-
ponentwise gap to select individuals) and NSGA-II (using the crowding distance).
Moreover, to a certain extent, both algorithms combine the information of existing
solutions on the Pareto front in order to find new points in the gaps. In BIMADS and
in MULTIMADS for computing reference points and in EMO to generate offspring
via recombination.

However, there are also remarkable differences between EMO algorithms and DSM
for MOO. The algorithms belonging to the class of DSM are deterministic, present-
ing a well established convergence analysis. EMO methods are randomized and, for
the common EMO algorithmic instantiations, convergence proves have not yet been
established. From the first results, obtained by generalizing the convergence analysis
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from single objective EA, it can be concluded that the convergence of EMO methods
will be of probabilistic nature, also addressing global optimums.

EMO algorithms introduced some interesting concepts, such as indicator-based se-
lection and randomization. Some of these might also prove to be beneficial for DSM
design in MOO. Finally, hybrids of multiobjective DSM and EMO algorithms, as
they already exists in single objective optimization, might yield search algorithms that
enjoy at the same time the flexibility and robustness of EMO algorithms and the de-
terministic convergence properties of DSM.
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