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Introduction

• [Last time we have seen that the sample mean converges to 
the true mean for sufficiently large samples. 

• Today we consider the Central Limit Theorem which tells us 
still a bit more: namely that the sample mean becomes 
normally distributed for sufficiently large samples

• Today we will not focus so much on the proof of the 
theorem, but rather on what we can do with it:]

• Applications of the Central Limit Theorem:

– Approximate distributions of sums of random variables, in 

particular the binomial distribution

– Construct a confidence interval for the sample mean
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Central Limit Theorem for Discrete Independent Trials

• n independent trials: X1, .., Xn; E(Xi)=mu, V(Xi) = sig^2.

• [First we look at sums, later at the sample mean.] Consider the 

sum S_n = X_1 + … + X_n

• [Expectation=mean: sum of the expected values]

E(S) = E(X_1) + … + E(X_n) = n mu

• Variance (because of independence of the X’s):

V(S) = V(X_1) + … + V(X_n) = n sigma^2

• Central limit theorem: Sn has, approximately, a normal density.

• “Problem 1”: every S_n will have a different mean and variance: 

which both get large(r and larger)

• [Not a big problem, but] Solution: use standardized sums: 

S^*_n = (S_n – n mu) / sqrt(n sigma^2) 

S^*_n has  E(S^*_n)= 0 and D(S^*_n) = 1 for all n (SHOW; and it 

will approach a standard normal density)

• If S_n = j then S^*n = x_j = (j – n mu) / sqrt(n sigma^2)
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Going from discrete to continuous

• “Problem 2”: S^*_j is discrete (possible values x_j); normal 
density is continuous.

• Draw a figure: divide continuous axis into discrete bins. 
Indicate distance apart. Refer to figure 9.2 and 9.3

• Area under the histogram: eps = 1 / sqrt(n sig^2) sum_k b(n, 
p, k) = 1 / sqrt(n sig^2) (=distance between two spikes!)

• So solution: multiply the heights of the spikes by 1/eps

• CLT:

P(S_n = j) \approx phi(x_j) / sqrt(n sig^2)

where x_j = (j – n mu)/sqrt(n sig^2) and phi(x) is the 
standard normal density 1/sqrt(2pi) e^(-1/2 x^2)
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Probability for an interval

• P(i <= S_n <=j) = P((i – mu)/sig sqrt(n) <= S^*_n <= (j –
mu)/…)

• So we take: \int_i*^j* phi(x) dx

• Note from the image we can see it’s better to take (i-1/2) to 
(j+1/2). This is called a continuity correction.
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Example

• Throw a die 420 times. S_420 = X_1 + … X_420 

• What is P(1400 <= S_420 <= 1550)?

• E(X) = 3.5; V(X) = 35/12

• E(S_420)  = 420 * 3.5 = 1470; V(S_420) = 420 * 35 / 12 = 
1225; sig(S_420) = 35.

• P(1400<= S_420 <=1500) ~ P((1399.5 -1470) / 35 <= 
S*_420 <= (1550.5 -1470) / 35) = P(-2.01 <= S*_420 <= 2.3) 
~NA(-2.01, 2.30)=.9670.



Probability and Statistics, Mark Huiskes, LIACS, Lecture 96/12/2006

Approximating the Binomial Distribution

• Example: Bernoulli Trials S_n = X_1 + … + X_n. 

• X=1 for succes, with probability p, X=0 for failure (prob q = 
1-p)

• S_n has a binomial distribution b(n,p,k) with mean np and 
variance npq.

• 1. Approximation of a single probability value:

P(S_n = j) \approx phi(x_j) / sqrt(npq)

phi(x) = 1\sqrt(2 pi) e^(-1/2 x^2)

• 2. Approximation of an interval: 

P(i <= Sn <= j) = \int_i*^j* phi(x) dx

With i* = i-1/2-np/sqrt(npq) and j*= 
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When to use which approximation?

• Small n: just use the binomial distribution itself

• Large n, small p: use the Poisson approximation

• Large n, moderate p: use the normal density, esp accurate 
for values of k not too far from np.
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Distribution of the Sample Mean

• [So far we have looked at sums of independent random 
variables. Now we will look at the sample mean. For large n 
also the sample mean is normally distributed]

• A_n = 1/n (X_1 + … + X_n)

• Again E(Xi) = mu, V(Xi) = sig^2. We use A_n to estimate mu

• E(A_n) = mu, V(A_n) = sigma^2 / n, D(A_n) = sigma/sqrt(n) 
(standard error = standard deviation of the sample mean).

• Central Limit Theorem: A_n = S_n / n has a normal density, 
and A^*n = (A_n – mu) / (sig/sqrt(n)) has a standard normal 
density.

• Show what this means. Move to paper
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Confidence intervals

• Show with a picture what that means: use worked out text 
on paper.

• Work out the probability of P(mu – r <= A_n <= mu + r)

• A_n has a normal distribution with mean mu and standard 
deviation the standard error. So we can compute this 
probability by transforming to the standard normal density.

• Form of a confidence interval:

best estimate +/- “some number” x standard error of best 
estimate
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Computing confidence interval for the mean with known 
standard deviation

• Compute the sample mean and standard error

• Compute the z-value corresponding to the confidence level

• Confidence interval: sample mean +/- z_c * standard error.
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Example

• Sample of 100 observations. Sample mean: A_n = 10. 
Suppose standard deviation of a measurement is known to 
be 2. Construct a 95% confidence interval for the sample 
mean.

• 95% confidence: z = 1.96.

• Confidence interval: sample mean +/- z * standard error.

• Standard error: 2 / sqrt(100) = 0.2

Confidence interval: [10 – 1.96 * 0.2, 10 + 1.96 * 0.2] = 

[9.61,10.39]



Probability and Statistics, Mark Huiskes, LIACS, Lecture 96/12/2006

Unknown standard deviation

• What if we don’t know the standard deviation:

– We simply take the sample standard error: works well if n is 

sufficiently large

– For n not large, we need to use the t-distribution instead of the 

normal distribution


