Central Limit Theorem and Confidence Intervals

Mark Huiskes, LIACS
mark.huiskes@liacs.nl

Introduction

- [Last time we have seen that the sample mean converges to the true mean for sufficiently large samples.
- Today we consider the Central Limit Theorem which tells us still a bit more: namely that the sample mean becomes normally distributed for sufficiently large samples
- Today we will not focus so much on the proof of the theorem, but rather on what we can do with it:]
- Applications of the Central Limit Theorem:
- Approximate distributions of sums of random variables, in particular the binomial distribution
- Construct a confidence interval for the sample mean

Central Limit Theorem for Discrete Independent Trials

- n independent trials: $\mathrm{X} 1, \ldots, \mathrm{Xn}$; $\mathrm{E}(\mathrm{Xi})=\mathrm{mu}, \mathrm{V}\left(\mathrm{Xi}_{\mathrm{i}}\right)=\operatorname{sig}{ }^{\wedge} 2$.
- [First we look at sums, later at the sample mean.] Consider the sum S_n = X_1 + ... + X_n
- [Expectation=mean: sum of the expected values]

$$
E(S)=E\left(X _1\right)+\ldots+E\left(X _n\right)=n \text { mu }
$$

- Variance (because of independence of the X 's): $\mathrm{V}(\mathrm{S})=\mathrm{V}\left(\mathrm{X} _1\right)+\ldots+\mathrm{V}\left(\mathrm{X} _\mathrm{n}\right)=\mathrm{n}$ sigma^2
- Central limit theorem: Sn has, approximately, a normal density.
- "Problem 1": every S_n will have a different mean and variance: which both get large(r and larger)
- [Not a big problem, but] Solution: use standardized sums:
$S^{\wedge *} _n=\left(S _n-n m u\right) /$ sqrt(n sigma^2) $S^{\wedge \star} _n$ has $E\left(S^{\wedge \star} _n\right)=0$ and $D\left(S^{\wedge \star} _n\right)=1$ for all $n(S H O W$; and it will approach a standard normal density)
- If $\operatorname{S_ n}=\mathrm{j}$ then $\mathrm{S}^{\wedge \star} \mathrm{n}=\mathrm{x} \mathrm{j}=(\mathrm{j}-\mathrm{n} \mathrm{mu}) /$ sqrt(n sigma^2)

Going from discrete to continuous

- "Problem $2^{\prime \prime}: \mathrm{S}^{\wedge *} \mathrm{j}$ is discrete (possible values x j); normal density is continuous.
- Draw a figure: divide continuous axis into discrete bins. Indicate distance apart. Refer to figure 9.2 and 9.3
- Area under the histogram: eps = 1 / sqrt(n sig^2) sum_k b(n, $\mathrm{p}, \mathrm{k})=1 / \operatorname{sqrt}(\mathrm{n}$ sig^2) (=distance between two spikes!)
- So solution: multiply the heights of the spikes by $1 / \mathrm{eps}$
- CLT:
$P\left(S _n=j\right)$ lapprox phi(x _j) / sqrt(n sig^2) where $x_{d}=(j-n m u) / s q r t\left(n \operatorname{sig}^{\wedge} 2\right)$ and $p h i(x)$ is the standard normal density $1 /$ sqrt(2pi) $e^{\wedge}\left(-1 / 2 x^{\wedge} 2\right)$

Probability for an interval

- $P\left(i<=S _n<=j\right)=P\left((i-m u) /\right.$ sig sqrt(n) $<=S^{\wedge *} n<=(j-$ mu)/...)
- So we take: $\operatorname{lint_ i^{*}j^{*}}$ phi(x) dx
- Note from the image we can see it's better to take (i-1/2) to ($\mathrm{j}+1 / 2$). This is called a continuity correction.

Example

- Throw a die 420 times. S_420 = X_1 + ... X_420
- What is $P\left(1400<=S _420<=1550\right)$?
- $E(X)=3.5 ; V(X)=35 / 12$
- $E\left(S _420\right)=420$ * $3.5=1470 ; V\left(S _420\right)=420 * 35 / 12=$ $1225 ;$ sig $\left(S _420\right)=35$.
- $\mathrm{P}(1400<=$ S_420 <=1500) ~ $\mathrm{P}((1399.5-1470) / 35<=$ S^{*} _ $\left.420<=(1550.5-1470) / 35\right)=P\left(-2.01<=S^{*} _420<=2.3\right)$ $\sim N A(-2.01,2.30)=.9670$.

Approximating the Binomial Distribution

- Example: Bernoulli Trials S_n = X_1 + ... + X_n.
- $\mathrm{X}=1$ for succes, with probability $\mathrm{p}, \mathrm{X}=0$ for failure ($\mathrm{prob} \mathrm{q}=$ 1-p)
- S_n has a binomial distribution $\mathrm{b}(\mathrm{n}, \mathrm{p}, \mathrm{k})$ with mean np and variance npq.
- 1. Approximation of a single probability value: P(S_n = j) \approx phi(x - $) /$ sqrt(npq) phi(x) $=1 \backslash \operatorname{sqrt}\left(2\right.$ pi) $e^{\wedge\left(-1 / 2 x^{\wedge} 2\right)}$
- 2. Approximation of an interval:
$P(\mathrm{i}<=\mathrm{Sn}<=\mathrm{j})=\operatorname{lint} \mathrm{i}^{*} \wedge^{\star} \mathrm{j}^{*} \operatorname{phi}(\mathrm{x}) \mathrm{dx}$ With $i^{*}=i-1 / 2-n p / s q r t(n p q)$ and $j^{*}=$

When to use which approximation?

- Small n : just use the binomial distribution itself
- Large n, small p: use the Poisson approximation
- Large n, moderate p: use the normal density, esp accurate for values of k not too far from np.

Distribution of the Sample Mean

- [So far we have looked at sums of independent random variables. Now we will look at the sample mean. For large n also the sample mean is normally distributed]
- A_n $=1 / n\left(X _1+\ldots+X _n\right)$
- Again $E(X i)=m u, V(X i)=s i g^{\wedge} 2$. We use $A _n$ to estimate $m u$
- $E\left(A _n\right)=m u, V\left(A _n\right)=\operatorname{sigma}{ }^{\wedge} 2 / n, D\left(A _n\right)=$ sigma/sqrt(n) (standard error = standard deviation of the sample mean).
- Central Limit Theorem: A_n = S_n / n has a normal density, and $\mathrm{A}^{\wedge *} \mathrm{n}=\left(\mathrm{A} _\mathrm{n}-\mathrm{mu}\right) /(\operatorname{sig} / \mathrm{sqrt}(\mathrm{n}))$ has a standard normal density.
- Show what this means. Move to paper

Confidence intervals

- Show with a picture what that means: use worked out text on paper.
- Work out the probability of $P\left(m u-r<=A _n<=m u+r\right)$
- A_n has a normal distribution with mean mu and standard deviation the standard error. So we can compute this probability by transforming to the standard normal density.
- Form of a confidence interval:
best estimate +/- "some number" x standard error of best estimate
- Compute the sample mean and standard error
- Compute the z-value corresponding to the confidence level
- Confidence interval: sample mean +/-z_c * standard error.

Example

- Sample of 100 observations. Sample mean: A_n = 10 . Suppose standard deviation of a measurement is known to be 2. Construct a 95% confidence interval for the sample mean.
- 95% confidence: $z=1.96$.
- Confidence interval: sample mean +/- z * standard error.
- Standard error: 2 / sqrt(100) $=0.2$

Confidence interval: [10-1.96 * 0.2, $10+1.96$ * 0.2] =
[9.61,10.39]

Unknown standard deviation

- What if we don't know the standard deviation:
- We simply take the sample standard error: works well if n is sufficiently large
- For n not large, we need to use the t-distribution instead of the normal distribution

