Important Distributions and Densities

Mark Huiskes, LIACS
mark.huiskes@liacs.nl

Introduction

- This class we will consider a number of important distributions and densities.
- Together they cover quite a few of the elementary probabilistic models often used in practice.
- First we discuss a number of discrete distribution functions, then some continuous density functions. In the last part l'll also show how you can compute the distribution/density function that is a function of a different random variable.
- Next week, some of them will serve as examples for computing the the expectation and variance of distributions.

Discrete Uniform Distribution

- Sample space: $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right\}$
- Distribution function: $m(\omega)=\frac{1}{n} \quad$ for all $\omega \in \Omega$
- Picture:
- Example: Throwing a fair die; drawing a ball from an urn etc.
- Often used in "symmetric" problems: no outcome is more probable than another

Binomial Distribution

- Counts the number of successes in a Bernoulli trials process with parameters n and p
- Sample space: $\Omega=\{1,2,3, \ldots, n\}$
- Distribution function: $m(\omega)=\binom{n}{\omega} p^{\omega}(1-p)^{n-\omega} \quad$, or:

$$
b(p, n, k)=\binom{n}{k} p^{k} q^{n-k}
$$

- Decision tree

Geometric Distribution

- Models the trial of first success in a Bernoulli trials process with parameters n and p
- Sample space: $\Omega=\{1,2,3, \ldots\}$
- Let T be the number of the trial at which the first success occurs. [Decision tree]. Then
$P(T=1)=p$
$\mathrm{P}(\mathrm{T}=2)=\mathrm{qp}$
$P(T=3)=q^{\wedge} 2 p$
:
$P(T=n)=q^{\wedge}(n-1) p$
- Distribution function: $m(\omega)=(1-p)^{\omega-1} p$ or: $P(T=j)=q^{j-1} p$
- Called "geometric" because of its relation to the geometric series: $1+s+s^{\wedge} 2+s^{\wedge} 3+\ldots=1 /(1-s)$. [Derive]

Geometric Distribution (more)

- Example: Make assignment 8: $P(T>5 \mid T>2)=P(T>3)=q^{\wedge} 3=1 / 8$ Show in the assignment that:
- $P(T>k)=q^{\wedge} k\left(p+q p+q^{\wedge} 2 p+\ldots\right)=q^{\wedge} k$
- Memory-less property $\mathrm{P}(\mathrm{T}>\mathrm{r}+\mathrm{s} \mid \mathrm{T}>\mathrm{r})=\mathrm{P}(\mathrm{T}>\mathrm{s})=\mathrm{q}^{\wedge} \mathrm{s}$

Poisson Distribution (introduction)

- Models the number of random occurrences in an interval, [e.g. the number of incoming customers, or telephone calls.]
- Sample space: $\Omega=\{0,1,2,3, \ldots\}$
- Assumptions:
- the average rate is a constant: λ
- The number of occurrences in disjoint intervals are independent
- Approximate the situation for an interval of length t using a binomial probability: n intervals with probability of occurrence $p=\frac{\lambda t}{n}$, as that gives the right rate.

Poisson Distribution (continued)

- The Poisson distribution approximates the binomial distribution for large n and small p
- X: Poisson variable with parameter lambda X_n: Approximating binomial variable with $p=\frac{\lambda}{n}$, we have that

$$
P(X=k)=\lim _{n \rightarrow \infty} P\left(X_{n}=k\right)=\lim _{n \rightarrow \infty}\binom{n}{k} p^{k}(1-p)^{n-k}=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$

- Distribution function: $P(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}$

Poisson Distribution (better derivation)

$$
\lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n}=e^{-\lambda}
$$

with $p=\frac{\lambda}{n}$, we have that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P(X=k) & =\lim _{n \rightarrow \infty}\binom{n}{k} p^{k}(1-p)^{n-k}=\lim _{n \rightarrow \infty} \frac{n!}{(n-k)!k!}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k} \\
& =\lim _{n \rightarrow \infty}\left(\frac{n}{n}\right)\left(\frac{n-1}{n}\right) \cdots\left(\frac{n-k+1}{n}\right)\left(\frac{\lambda^{k}}{k!}\right)\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-k} \\
& =\frac{\lambda^{k}}{k!} e^{-\lambda}
\end{aligned}
$$

Example

- Printing words. Suppose for each word there is a probability of $1 / 1000$ that a spelling mistake is made. Suppose there are 100 words on a page: what is the probability distribution of the number of mistakes on a page (S)
- Binomial

$$
P(S=k)=\binom{100}{k} \frac{1}{1000^{k}}\left(1-\frac{1}{1000}\right)^{100-k}
$$

- Poisson: $\lambda=n p=100 \times \frac{1}{1000}=\frac{1}{10}$

$$
P(S=k)=\frac{.1^{k}}{k!} e^{-.1}
$$

- Probability of at least one spelling mistake:

$$
P(S \geq 1)=1-P(S=0)=1-e^{-.1}=0.0952
$$

Assignment

- Assignment 18: $p=1 / 500$. Chance a bit hits a particular cookie is $1 / 500$.
- R: \#raisins in particular cookie, C: \#chips in particular cookie
- lam_R = 600 * $1 / 500$; lam_C $=400$ * $1 / 500$
- Any bits: lam_B = 1000 * $1 / 500$.

Also explain alternative way:
$1-P(R=0, C=0)-P(R=1, C=0)-P(R=0, C=1)+$ independence, also gives 0.5940

The Continuous Uniform Density

- Random variable U whose value represents the outcome of the experiment consisting of choosing a real number at random from the interval [a, b].
- Density:

$$
f(\omega)=\left\{\begin{array}{clc}
1 /(b-a) & \text { if } & a \leq \omega \leq b \\
0 & \text { if } & \text { otherwise }
\end{array}\right.
$$

The Exponential Density

- Often used to model times between independent events that happen at a constant average rate
- Density:

$$
f(x)=\left\{\begin{array}{ccc}
\lambda e^{-\lambda x} & \text { if } & x \geq 0 \\
0 & \text { if } & \text { otherwise }
\end{array}\right.
$$

- Cumulative distribution function:

$$
F(x)=P(T \leq x)=\int_{0}^{x} \lambda e^{-\lambda t} d t=1-e^{-\lambda x}
$$

- Memoryless property: $P(T>r+s \mid T>r)=P(T>s)$

Relationships with other distributions

- The exponential density is the limit case of the geometric distribution with the same setup as for Poisson
- The Poisson distribution with parameter λ can be simulated by counting how many realizations of an exponential variable with parameter λ fit in a unit interval
- [[The exponential density gives the waiting times for the Poisson case. For instance with a Poisson variable with parameter λt we have;

$$
P(X=0)=e^{-\lambda t}
$$

so the probability of waiting a certain time goes down exponentially like in the exponential distribution]]

Normal Density

- According to the book the most important density function. We will see why later.
- Sample space: $\Omega=\mathbb{R}$
- Density function with parameters μ and σ

$$
\begin{aligned}
& f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \\
& \mu: \text { center; } \sigma: \text { spread }
\end{aligned}
$$

- Cumulative distribution $F_{X}(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(s-\mu)^{2}}{2 \sigma^{2}}} d s$
- The normal density with has a normal density with $\mu=0$ and $\sigma=1$ is called the standard normal density:

$$
f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}
$$

Functions of Random Variables

- Start with an example: Assignment 1
- Now for a general (strictly increasing) function ϕ and $Y=\phi(X) \quad$:

$$
F_{Y}(y)=P(Y \leq y)=P(\phi(X) \leq y)=P\left(X \leq \phi^{-1}(y)\right)=F_{X}\left(\phi^{-1}(y)\right)
$$

- Very similar for strictly decreasing.
- The density function of Y can be determined by differentiating the cumulative distribution function (increasing):

$$
f_{Y}(y)=f_{X}\left(\phi^{-1}(y)\right) \frac{d}{d y} \phi^{-1}(y)
$$

Example

- Suppose Z has a standard normal density:

$$
f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}
$$

- Show that $X=\sigma Z+\mu$ has a normal density with parameters μ and σ :

$$
\phi(z)=\sigma z+\mu, \text { so } \phi^{-1}(x)=\frac{x-\mu}{\sigma}
$$

So:

$$
\begin{aligned}
& F_{X}(x)=F_{Z}\left(\frac{x-\mu}{\sigma}\right) \\
& f_{X}(x)=f_{Z}\left(\frac{x-\mu}{\sigma}\right) \cdot \frac{1}{\sigma}=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{x-\mu}{2 \sigma^{2}}}
\end{aligned}
$$

- Similarly: if X has a normal density with parameters mu and sigma, then $\mathrm{Z}=(\mathrm{X}-\mathrm{mu}) /$ sigma is standard normal

Example with Normal Distribution Table

- $P(Z<=1.56)$
- $P(Z<=-1.56)$

Simulation

- Simulate random variable with a strictly increasing cumulative distribution function $F(y)$
- Use that $Y=F^{-1}(U)$ has cumulative distribution $F(y)$ if U is uniformly distributed on [0,1]:

$$
P(Y \leq y)=P\left(F^{-1}(U) \leq y\right)=P(U \leq F(y))=F(y)
$$

- So we can simulate values from such a random variable with values $F^{-1}(u)$, with u from the uniform distribution

