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Introduction

• This class we will consider a number of important 
distributions and densities.

• Together they cover quite a few of the elementary 
probabilistic models often used in practice.

• First we discuss a number of discrete distribution functions, 
then some continuous density functions. In the last part I’ll 
also show how you can compute the distribution/density 
function that is a function of a different random variable.

• Next week, some of them will serve as examples for 
computing the the expectation and variance of distributions.
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Discrete Uniform Distribution

• Sample space: 

• Distribution function:                       for all

• Picture:

• Example: Throwing a fair die; drawing a ball from an urn etc.

• Often used in “symmetric” problems: no outcome is more 
probable than another 

Ω = {ω1, ω2, . . . , ωn}

m(ω) = 1
n ω ∈ Ω
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Binomial Distribution

• Counts the number of successes in a Bernoulli trials 
process with parameters     and 

• Sample space:

• Distribution function:                                          , or:

• Decision tree

b(p, n, k) =

(
n
k

)
pkqn−k

m(ω) =

(
n
ω

)
pω(1− p)n−ω

n p

Ω = {1, 2, 3, . . . , n}



Probability and Statistics, Mark Huiskes, LIACS, Lecture 615/11/2006

• Models the trial of first success in a Bernoulli trials process 
with parameters     and 

• Sample space:
• Let T be the number of the trial at which the first success 

occurs. [Decision tree]. Then

P(T=1) = p

P(T=2) = qp

P(T=3) = q^2 p

:

P(T=n) = q^(n-1) p

• Distribution function:                                   or:

• Called “geometric”  because of its relation to the geometric 
series: 1 + s + s^2 + s^3 + …= 1 / ( 1 – s).  [Derive]

Geometric Distribution

n p

Ω = {1, 2, 3, . . .}

P (T = j) = qj−1pm(ω) = (1− p)ω−1p
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Geometric Distribution (more)

• Example: Make assignment 8: P(T > 5|T> 2)=P(T>3)=q^3=1/8

Show in the assignment that:

• P(T>k) = q^k(p + qp + q^2p + …) = q^k

• Memory-less property P(T > r+s|T>r) = P(T>s)= q^s
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Poisson Distribution (introduction)

• Models the number of random occurrences in an interval, 
[e.g. the number of incoming customers, or telephone calls.]

• Sample space:

• Assumptions:

– the average rate is a constant: 

– The number of occurrences in disjoint intervals are 

independent

• Approximate the situation for an interval of length t using a 
binomial probability: n intervals with probability of 
occurrence              , as that gives the right rate.

λ

p = λt
n

Ω = {0, 1, 2, 3, . . .}
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Poisson Distribution (continued)

with p = λ
n
, we have that

P (X = k) = lim
n→∞

P (Xn = k) = lim
n→∞

(
n
k

)
pk(1− p)n−k = λk

k! e
−λ

• The Poisson distribution approximates the binomial 
distribution for large n and small p

• X: Poisson variable with parameter lambda

X_n: Approximating binomial variable

• Distribution function: P (X = k) = λk

k! e
−λ
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Poisson Distribution (better derivation)

lim
n→∞

(1− λ
n
)n = e−λ

lim
n→∞

P (X = k) = lim
n→∞

(
n
k

)
pk(1−p)n−k = lim

n→∞
n!

(n−k)!k!

(
λ
n

)k (
1− λ

n

)n−k

= lim
n→∞

(
n
n

) (
n−1
n

)
· · ·
(
n−k+1
n

) (
λk

k!

) (
1− λ

n

)n (
1− λ

n

)−k

= λk

k! e
−λ

with p = λ
n
, we have that
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Example

• Printing words. Suppose for each word there is a probability 
of 1/1000 that a spelling mistake is made. Suppose there 
are 100 words on a page: what is the probability distribution 
of the number of mistakes on a page (S)

• Binomial

• Poisson: 

• Probability of at least one spelling mistake:

P (S = k) =

(
100
k

)
1

1000k

(
1− 1

1000

)100−k

λ = np = 100× 1
1000 =

1
10

P (S = k) = .1k

k! e
−.1

P (S ≥ 1) = 1− P (S = 0) = 1− e−.1 = 0.0952
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Assignment

• Assignment 18:  p = 1/500. Chance a bit hits a particular 
cookie is 1/500. 

• R: #raisins in particular cookie, C: #chips in particular cookie

• lam_R = 600 * 1/500; lam_C = 400 * 1/500

• Any bits: lam_B = 1000 * 1/500. 

Also explain alternative way:

1-P(R=0, C=0)-P(R=1, C=0)-P(R=0, C=1) + independence, 
also gives 0.5940
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The Continuous Uniform Density

• Random variable U whose value represents the outcome of 
the experiment consisting of choosing a real number at 
random from the interval [a, b].

• Density:

f(ω) =

{
1/(b− a) if a ≤ ω ≤ b,

0 if otherwise
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The Exponential Density

• Often used to model times between independent events that 
happen at a constant average rate

• Density:

• Cumulative distribution function:

• Memoryless property: P(T>r+s|T>r) = P(T>s)

f(x) =

{
λe−λx if x ≥ 0,
0 if otherwise

F (x) = P (T ≤ x) =
x∫

0

λe−λt dt = 1− e−λx
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Relationships with other distributions

• The exponential density is the limit case of the geometric 
distribution with the same setup as for Poisson

• The Poisson distribution with parameter      can be 
simulated by counting how many realizations of an 
exponential variable with parameter      fit in a unit interval

• [[The exponential density gives the waiting times for the 
Poisson case. For instance with a Poisson variable with 
parameter        we have; 

so the probability of waiting a certain time goes down 
exponentially like in the exponential distribution]]

λ

λt

λ

P (X = 0) = e−λt
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Normal Density

• According to the book the most important density function. 
We will see why later.

• Sample space:

• Density function with parameters      and 

: center;        : spread

• Cumulative distribution

• The normal density with has a normal density with           
and             is called the standard normal density:

Ω = IR

µ σ

fX(x) =
1√
2πσ2

e−
(x−µ)2

2σ2

FX(x) =
x∫

−∞

1√
2πσ2

e−
(s−µ)2

2σ2 ds

µ σ

µ = 0
σ = 1

fZ(z) =
1√
2π

e−
z2

2
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Functions of Random Variables

• Start with an example: Assignment 1

• Now for a general (strictly increasing) function      and

:

• Very similar for strictly decreasing.

• The density function of Y can be determined by 
differentiating the cumulative distribution function 
(increasing):

Y = φ(X)

φ

FY (y) = P (Y ≤ y) = P (φ(X) ≤ y) = P (X ≤ φ−1(y)) = FX(φ
−1(y))

fY (y) = fX(φ
−1(y)) d

dy
φ−1(y)
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Example

• Suppose Z has a standard normal density:

• Show that                        has a normal density with 
parameters      and        :

So:

• Similarly: if X has a normal density with parameters mu and 
sigma, then Z = (X-mu)/sigma is standard normal

fZ(z) =
1√
2π

e−
z2

2

X = σZ + µ
µ σ

φ(z) = σz + µ, so φ−1(x) = x−µ
σ

FX(x) = FZ(
x−µ
σ
)

fX(x) = fZ(
x−µ
σ
) · 1

σ
= 1√

2πσ
e−

x−µ

2σ2
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Example with Normal Distribution Table

• P(Z <= 1.56)

• P(Z<= -1.56)
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Simulation

• Simulate random variable with a strictly increasing cumulative 
distribution function

• Use that                       has cumulative distribution      if U is 
uniformly distributed on [0,1]:

• So we can simulate values from such a random variable with 
values              , with u from the uniform distribution

F (y)

Y = F−1(U)

P (Y ≤ y) = P (F−1(U) ≤ y) = P (U ≤ F (y)) = F (y)

F−1(u)

F (y)


