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Estimating sample standard deviation

• Suppose we have a sample x_1, …, x_n

• Average: xbar = (x_1 + … + x_n) / n

• Standard deviation estimate s? Two approaches

1. s^2 = 1/n * ((x_1 – xbar) + … + (x_n – xbar))

2. s^2 = 1/(n-1) * ((x_1 – xbar) + … + (x_n – xbar))

• 1. corresponds to the maximum likelihood estimate

• 2. is an unbiased estimate (i.e. E(s) = sig)

• I recommend to use 1.

• Easier way to compute it: s^2 = (sum(x^2) – 1/n * sum(x)) / 
n. Example: 5 5 6 8 mu=6; (37.5)-> 1.5

• (X – xbar) / (s /sqrt(n)) has a normal density for fixed s. If s 
is also random, this quantity has a t-density with n or n-1 
degrees of freedom, depending on how s was estimated.
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Introduction

• Last time: first form of inference: confidence intervals.

• Today hypothesis testing. [Wageningen coffee room: very 
confusing to students] Let’s see…

• Important not to interpret things the wrong way. If you 
understand the procedure/understand the mathematics, 
there’s no reason to do that, and there’s no problem.
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Hypothesis Testing Introduction

• Goal: use data to infer if a hypothesis make sense. 

• [Start from the sample space]

• Simple hypothesis: completely determines a probability 
distribution/density on the sample space

• [Draw a picture]

• Somehow define a critical set: if outcome is in that set we 
reject the hypothesis. [We will see later how we define such 
sets in practice, but somehow they should capture the 
unlikely values under the hypothesis. For the other values 
we say: “Ok, that’s fine, no reason to reject it”

• Example: flipping a coin, counting the number of heads: 
hypothesis: “this coin is fair” explain the critical region

• Example: hypothesis: “this email is spam”
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Some terminology

• Null hypothesis: the hypothesis being tested; [it is assumed true 
until evidence is found that is strong enough to reject it; the name 
is a bit of a custom; the negation of the hypothesis is called the 
alternative hypothesis. This alternative is usually a composite 
hypothesis. Example H_0: mu = 2; H_a = mu \neq 2 ]

• [We want to find out if the data gives us reason to reject the null 
hypothesis.]

• Critical region: subset of sample space of which the outcomes lead 
to rejection of the specified hypothesis

• [We can now make two types of errors:] Error types:

type I error (alpha): the null hypothesis is true, but we reject it 
(‘false alarm’). [Happens when an unlikely event occurs by chance]

type II error (beta): the null hypothesis is false, but we do not reject 
it [Can also happen quite easily: e.g. mean is close]

• [Of course, we would like to make the probabilities of these two
events as small as possible.]
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[Examples]

• Airport security: weapon detection. Null hypothesis: this 
person is not carrying a weapon.

• � Medicine: Null hypothesis: this medicine does not work.

• � Information Retrieval. Null hypothesis: this document is 
not relevant to the user

• Spam filter: Null hypothesis: this is an ordinary mail.

• [Talk about these examples in terms of null hypotheses 
(often a hypothesis that there is no structural effect, but is 
not necessary), alternative hypotheses; type I errors, type II 
errors]
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Significance level and Power

• [The probability of a type I error is called the significance level of 
the test]

• Significance level: probability of a type I error (denoted by alpha).

• [Tradeoff between type I and type II errors (explain with spam 
detector)]

• [The power of a test is related to the type II error]

• Power (denoted by 1-beta) against a SIMPLE alternative 
hypothesis: the probability that the test correctly rejects the null 
hypothesis when the alternative hypothesis is true. [DO NOT WIPE
OUT; need it later!!!!!]

• [Note beta is the type II error]

• The significance level and the power are probabilities of the same 
event: that the null hypothesis is rejected. Just computed under
different assumptions:

– Significance level: null hypothesis is true

– Power: a particular alternative hypothesis is true

[Explain with the fair coin example]

• A good test has a small significance level [can’t help it] (type I error 
unlikely) and large power (type II error unlikely).
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Test Statistic

• The critical/rejection region (CR/RR) is usually formulated 
using a test statistic.

• Test statistic: quantity computed from the data which has a 
known distribution/density given the null hypothesis.

• [If the test statistic is outside a certain range, or exceeds a 
certain threshold, the null hypothesis is rejected.]

• The CR/RR is chosen such that the probability that an 
outcome is in the rejection region is (at most) the 
significance level (common values 5%, 1%)

• [Leave p-value/critical value for later].
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Basic steps (method 1)

1. Formulate a null hypothesis (and alternative hypotheses)

2. Specify the significance level of the test 

3. Choose the procedure to compute a test statistic from the 
data

4. Determine a RR 

5. Collect the data and compute the outcome of the test 
statistic. 

6. Reject the null hypothesis if the test statistic falls in the 
rejection region.
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Hypotheses about parameters (most typical case)

• Null hypothesis: parameter has a certain value, e.g. mu = a.

• Alternative hypotheses mu \neq a

• [Leave one-sided and two-sided tests for later].
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Testing for a sample mean (large sample or known s.d.)

• [First an example; then the general procedure]

• Measure IQ of 16 people [say Belgians]. Model: independent trials 
X_1, …, X16: E(X_i) = mu; V(X_i) = sig^2.

• [ We test the hypothesis that their mean IQ = 100]: 

H_0: mu = E(X)= 100

• Suppose we know that sig=12. 

• We measure a sample average A_n = (x_1 + .. + x_n) / n = 118.

• Reject or not? [Can the result be reasonably explained by 
chance?].

• Given that the null hypothesis is true, we know: A_n has a normal 
density with mean 100 and standard error 12/sqrt(16)=3, so Z = 
A_n -109/ 3 will have a standard normal density. 

• Z is used as the test statistic. [Often a good procedure:] General 
form: difference with expected value expressed in units of the 
standard error

• [Let’s compute the rejection region, and then backtrack to see 
what’s a good test statistic.]
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Rejection Region

• [Before we can compute the rejection region: ] Set 
significance level alpha, e.g. a=0.05.

• [Make a picture of density of Z. When do we reject? When 
values are too unlikely. So just like last time] Determine 
values z_alpha such that P(-z_alpha <= Z <= z_alpha) = 1-
alpha. RR: Z <= -z_alpha or Z>=z_alpha: z_a = 1.96 (critical 
value)

• We measured A_n = 118, so z = 109 – 100 / 3 = 3. So: 
Reject.
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General procedure

1. H_0: E(X) = mu

2. Set significance level alpha.

3. A_n = (X_1 + … + X_n) / n

Test statistic: Z = (A_n – mu) / sig_e

4.  RR = {(Z <= -z_alpha) or (Z >= z_alpha)} such that P(RR) = 
alpha. (z_alpha is the critical value)

5.  Compute outcome z of test statistic:

z = (a_n – mu) / sig_e

6. Reject H_0 or not.
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Still to do

• Compute/explain p-values (critical values)

• One-sided vs two-sided tests

• Give an example of a power computation

• Apply derived procedure to differences

– Paired test

– Difference of means

• If there’s time: test coin bias
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p-value

• p-value: probability of getting a value of the test statistic as 
extreme as or more extreme than that observed value, given 
H_0 is true. 

• Explain with example: z=3. Draw a picture:

• p-value = 2 * (0.5 - NA(0,3)) = 2 * (.5 - .4987) = 2 * 0.013 = 
0.026

• p-value equal to the significance level at which we would 
just reject the null hypothesis (i.e. smallest sig level at which 
we reject)

• Explain this is a different methodology. No need to set 
anything beforehand. Is often done. “Disadvantage” (only to 
the very lazy): bit more computation.
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One-sided tests

• Explain. Almost always a bad idea, so I won’t show you an 
example.
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Power (example)

• Power of test against the alternative hypothesis that 
average IQ = 120.

• H_a: mu = 120. Power: probability of rejection

• 1-beta = P(Z <= - z_a or Z >= z_a) (given H_a)

• So: beta = P(-z_a <= X-100/3 <= z_a)= P(-3z_a+100 <= X 
<= z_a3 +100)= ((-3za+100 -120)/3 <= (X-120)/3 <= 
3za+100-120/3)= P(-za-20/3 <= X-120/3 <= za + 20/3)

• Alpha=0.95 means z_a = 1.96, so compute beta = 2 * NA(0, 
1.96 + 20/3)=2*NA(0,8.62)=0. So high power against this 
hypothesis!



Probability and Statistics, Mark Huiskes, LIACS, Lecture 1013/12/2006

Test for Paired observations (paired t-test)

• Assume differences are independent d1, …, dn

• H_0: E(d_i) = 0

• Estimate sample standard deviation of d_i

• t = (dbar – 0) / s_d

• Often applies if you measure the same event with different 
devices

• Depending situation, normal or t-test.
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Hypothesis test about a difference between the means of two 
large samples

• Model: two independent trials processes, one with mean 
mu1 and sd sig1, and one with mean mu2 and sd sig2

• [Suppose you want to test if the means of the two samples 
are the same]

• H0: mu1 = mu2, or: mu1-mu2=0.

• Xbar = Xbar1 – Xbar2 normally distributed under H0

• E(Xbar) = 0; V(Xbar) = s1^2/n1 + s2^2/n2

• Test statistic Z = Xbar – 0 / se (<-sqrt(V(Xbar)))

• If sd’s are known are n’s large enough, we can use the 
normal density (else t, but some small complications so not 
discussed here.)
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Example

• 2 brands, see extra paper.
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Testing if a coin is fair

• Null hypothesis: the coin is fair. We set a significance level 
alpha = 0.05. Suppose we measure 40 heads, should we 
reject the null hypothesis for this significance level?

• phat = N_H / n, N_H ~ Binomial(n, p)

• E(phat) = p

• V(phat) = pq / n

• Standard error sig_e = sqrt(pq / n)

• (phat – p) / sig_e approximately has standard normal 
density (when testing proportions we always use the normal 
approximation)

• Critical region: x <= -1.96 or x>1.96

• Test-value: (0.4 – 0.5) / sqrt(0.25/100) = -0.1/0.5 * 10 = -2.

• So, yes we should reject the null hypothesis!

• p-value: P(X>=2 or X<=-2) = 1 – P(-2<= X <= 2) [Warning] = 
1- 2NA(0,2) = 1 – 2*.4772 = 0.0456.


