Lecture 4 (Enumerative) Combinatorics

- Principles of counting
- Counting possibilities
- Examples
- In how many ways can we
- Pick 6 numbers from 1 to 15 so that no two are consecutive?
- Can 7 balls be placed in 4 boxes, if no box is to be left empty?

Fundamental Principle of Counting

With m elements $a_{1}, . ., a_{m}$ and n elements $b_{1}, \ldots b_{n}$ it is possible to form $m \times n$ (ordered) pairs ($\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{j}}$) containing one element from each group

If we have n_{r} successive stages/selections/decisions with exactly n_{k} choices possible at the k-th step, then we can have a total of $N=n_{1} n_{2} \ldots n_{r}$ different results

Example:
3 starters, 4 mains, 2 dessert gives 24 different menus.

4 methods to generate collections (of size k) from a set of n elements:

1. Ordered sampling from the set with replacement
2. Ordered sampling from the set without replacement
3. Taking a combination from the set without replacement
4. Taking a combination from the set with replacement

Ordered sampling with replacement

"order matters, and elements can be drawn more than once"
Draw k elements from the set of n elements by selecting elements one by one:

- This gives an ordered sample of length k.
- If each time the selection is taken from the entire set (i.e. the same element can be drawn more than once), then there exist $N=n^{k}$ different samples.

Example:
$A=\{a, b, c\}$. How many words of size 4 can we form?

Ordered sampling without replacement

"Order matters, elements can be drawn only once", i.e.

- Draw k elements from the set by selecting elements one by one and remove them from the set once they are chosen.
- There exist a total of $N=(n)_{k}$ different samples without repetitions, where $(n)_{k}=n(n-1) \ldots$ ($n-k+1$)

Additional terminology:

- If we select n elements like this we get a permutation of the set.
- A permutation of a set A is an ordered listing of the elements of the set. We represent it as $a_{1} a_{2} \ldots a_{n}$.
- A permutation can be seen as a one-to-one mapping of A onto itself

Example:
$A=\{1,2,3\}$ has six permutations $123,132,213,231,312,321$

Ordered sampling without replacement

- The total number of different orderings (= permutations) of n elements is: n ! (n factorial); Note: $0!=1$
- A k-permutation of a set A is an ordered listing of a k-subset of A
- We represent it as $a_{1} a_{2} \ldots a_{k}$, e.g. there are 62 -permutations of $A=\{1,2,3\}: 12,13,21,23,31,32$
- As we have seen, a set of n elements has $(n)_{k}=n!/(n-k)$! k-permutations
- Give the probability of sampling without any repetitions: $(n)_{k} / n^{k}$

Combinations without replacement

"order does not matter, elements can be used only once"

- Take k elements without minding their order. Without replacement this corresponds to taking a subset of the set.

Example:
$A=\{1,2,3\}$. There are 3 such combinations: $\{1,2\},\{2,3\},\{1,3\}$
Define the binomial coefficient (pronounced as " n choose k ") as $\binom{n}{k}=\frac{(n)_{k}}{k!}=\frac{n!}{k!(n-k)!}$
A set of n elements has $\binom{n}{k}$ subsets (combinations without repetition) of size $\mathrm{k} \leq \mathrm{n}$
Note: $\binom{n}{0}=1$

Combinations with replacement

Order does not matter, and elements can be chosen more than once.

Example: $A=\{a, b, c, d\}$. Pick 4 elements, e.g. a, a, b, d.
Encode a, a, b, d as 1, 1, /, 1, /, /, 1 (Go through A, pick one from A (code ' 1 '), or go to next element from A (code $\left./{ }^{\prime}\right)$).)
Encode b, c, c, d as /, 1, /, 1, 1, /, 1.

Every selection corresponds to such strings. Strings always have length $n+k-1$; there are always ($n-1$) next-symbols, and k 1s.

The total number of combinations with repetition (also knows as bags or multisets) of size k from a set of n elements is:

$$
\binom{n+k-1}{n-1}=\binom{n+k-1}{k}
$$

Example: 3 types of pies. In how many ways can we pick 10 pies. $(10+3-1)$! / $3!(10-1)!=220$

Bernoulli trials

Bernoulli trials process consisting of n experiments:

- Each experiment has two possible outcomes, e.g. 0 or 1, success or failure: $\Omega_{\mathrm{i}}=\{0,1\}, \mathrm{i}=0, \ldots, \mathrm{n}$
- The probability p of success (1) is the same for each experiment; the probability q of failure (0) is $1-p$:

$$
\begin{aligned}
m_{i}(1) & =m_{i}(S)=p \\
m_{i}(0) & =m_{i}(F)=q=1-p
\end{aligned}
$$

Tree:
probabilities of outcomes of entire experiment (see figure page 96)

Binomial distribution

Given n Bernoulli trials with probability p of success on each experiment, the probability of exactly k successes is:

$$
\mathrm{b}(\mathrm{n}, \mathrm{p}, \mathrm{k})=\binom{n}{k} p^{k} q^{n-k}
$$

Explanation:

$$
\begin{aligned}
& P(E) \text { with } E=\{\omega \mid \omega \text { has } k \text { successes }\} \\
& P(E)=\sum_{\omega \in E} m(\omega)
\end{aligned}
$$

Using the tree: every path with k successes and $n-k$ failures:

$$
\mathrm{m}(\{\mathrm{k} \text { successes, } \mathrm{n}-\mathrm{k} \text { failures }\})=p^{k} q^{n-k}
$$

How many such paths are there? n possible trials, k should be successes: $\binom{n}{k}$
If B is a random variable counting the number of successes in a Bernoulli trials process with parameters n and p. Then the distribution $m(k)=b(n, p, k)$ is called the Binomial distribution.

Binomial distribution

A dice is rolled four times.

What is the probability that exactly one 6 turns up:

$$
b\left(4, \frac{1}{6}, 1\right)=\binom{4}{1} \cdot \frac{1}{6} \cdot\left(\frac{5}{6}\right)^{3}
$$

