
1

Computational

Molecular Biology

Erwin M. Bakker

Lecture 3, mainly from material by R. Shamir [2]

and H.J. Hoogeboom [4].

2

Pairwise Sequence Alignment

 Biological Motivation

 Algorithmic Aspect

 Recursive functions

 Formal definitions

 Dynamic Programming

 Complexity

 Heuristics

3

Molecular Biology Sequences

DNA A, T, C, G

RNA U, A, G, C

Protein A, R, D, N, C

E, Q, G, H, I

L, K, M, F, P

S, T, W, Y, V

4

Global Alignment

Dynamic Programming

Trace back to obtain an optimal global alignment.

Note that, here three such optimal global alignments exist.

Sequence S

Sequence TSequence S

Sequence T

t

t

c

-

g

g

c

t

a

a

-

c

55

Local Alignment

Local Alignment Problem

Given two sequences S and T, find

subsequences s of S and t of T whose

similarity is maximal over all pairs of

subsequences of S and T.

Note that, a subsequence here is a

contiguous subsequence.

66

Local Alignment
Motivation (1/2)

Coding and non-coding regions of DNA

 Mutations in non-coding regions (introns) are

expected to be more likely than mutations in

coding regions (exons). As mutations in exons

will have a direct impact on the organism.

 Therefore a best match between two stretches

of DNA from different species is most likely

between 2 exons (i.e., subsequences).

77

Local Alignment
Motivation (2/2)

Protein Domains

 Different kind of proteins and proteins

of different species often show local

similarities, so called homeoboxes

(most probably functional subunits).

88

Local Alignment Example

S: G G T C T G A G

T: A A A C G A

Match = 2, indel/substitution = -1

Best local alignment

S: G G T C T G A G

T: A A A C _ G A

99

Local Alignment
Local Suffix Alignment

Definition

Given sequences S and T, and indices i and j,
the local suffix alignment problem is finding a
(possibly empty) suffix s of S1…i and a
(possibly empty) suffix t of T1…j such that the
score of the alignment of s and t is maximal
over all alignments of suffixes of S1…i and T1…j.

Remark:

The solution of the local alignment problem is
the same as the maximal solution to the local
suffix alignment problem over all i and j.

S

T

i

j

s

t

1010

Local Alignment Algorithm

Let A(i,j) the value of the optimal local suffix
alignment for a given pair i,j of indices

Let the weights be limited to

σ(x,y) ≥ 0, if x, y match, and

σ(x,y) ≤ 0, if x, y do not match or
one of them is equal to
a space

Note: the maximal A(i,j) over all i, j is the
value we are looking for.

1111

Local Alignment Algorithm

Algorithm Sketch

 Compute the local suffix alignment (for all i
and j) of S’i = S1...i and T’j = T1…j. Using the
global alignment algorithm where the
prefixes of S’ and T’ whose alignments are
≤0 are discarded, i.e., subsequences may
start from indices ≥1.

 Search the results and find the indices i*
and j* of S and T respectively, after which
the similarity (obtained by local suffix
alignment) only decreases.

1212

Local Alignment Algorithm

Let A(i,j) be the optimal local suffix alignment score of

S1…i and T1…j , where 0 ≤ i ≤ n, and 0 ≤ j ≤ m, then:























),()1,(

11,),(),1(

),()1,1(

0

max),(

0),0(,0)0,(:,

j

i

ji

TjiA

mjandniforSjiA

TSjiA

jiA

jAiAji







Compute i* and j* such that A(i*,j*) = max1≤i≤n, 1≤j≤mA(i,j).

This value is the optimal local alignment score.

1313

Local Alignment
Obtain optimal local alignment sequences by

backtracking

1414

Local Alignment
Obtain optimal local alignment sequences by

backtracking

1515

Local Alignment Complexity

Lemma: Local alignment can be solved in linear space

 The optimal local alignment identifies the
subsequences s and t whose global alignment is
optimal over all pairs of subsequences.

 Hirschberg’s method for global alignment can then be
used to find the actual alignment of subsequences s
and t.

 Using the recursion i* and j* can be calculated using
two rows only.

 Hence the end points (i*,j*) can be computed in linear
space.

 Finding the start positions can be done using reverse
dynamic programming.

□

1616

Local Alignment Complexity

Time complexity O(mn)

Space complexity O(n+m)

1717

End-Space Free Alignment

End-Space Free Alignment Problem

Input: Two sequences S and T.

Question:

Find a best alignment between subsequences of S

and T when at least one of these subsequences is a

prefix of the original sequence and one (not

necessarily the other, i.e, complete overlap is

possible) is a suffix.

Hereby costs of indels at the end or beginning of the

sequences are not counted.

1818

End-Space Free Alignment
Motivation

Shotgun Sequence Assembly

 A large number of partially overlapping sequences
coming from many copies of one original but unknown
DNA sequence R has to be searched for pairs of
overlapping subsequences in order to reconstruct the
original DNA sequence.

 Two subsequences from different parts of R will have
a low global alignment score as well as a low end-
space free alignment score.

 Two overlapping subsequences from the same part of
R will still have a low global alignment score but a high
end-space free alignment score.

1919

End-Space Free Alignment
Example

A T C G

C G A G

G C T A C

T A C T A

A A T C

C G A G C T

A C T

… A A T C G A G C T A C T …

2020

End-Space Free Alignment
Example

2121

End-Space Free Algorithm

Initial Conditions

Set the initial conditions to allow zero weight to leading indel
operations in (at most) one of the sequences.

Compute Optimal Value

 Fill the table with the values of A(i,j) (as before).

 Then search for the maximal value in either of the ’ending rows’,
thus allowing (at most) one sequence to end before the other,
with zero weight for all indel operations from there on.

 This value is the best value.

Determine Sequence

The aligned sequence is tracked from cell (0,0) in the table until the
end of one sequence (bottom row /right most column). From
there on, all indel operations until cell (n,m) are not counted in
the total value (though they are present in the table).

2222

End-Space Free Alignment

Define the End-Space Free Alignment

score as A(S,T), then:

































),(

),(
max),(:

),(max),(:

),(max),(:

),()1,(

11,),(),1(

),()1,1(

max),(

0),0(,0)0,(:,

*

*

1,

**

,1

**

miA

jnA
TSAscorealignmentDefine

jiAjnAthatsuchjforSearch

jiAmiAthatsuchiforSearch

TjiA

mjandniforSjiA

TSjiA

jiA

jAiAji

njn

mni

j

i

ji







2323

End-Space Free Alignment

2424

End-Space Free Alignment
j*

i*

j* is where S ends before T

i* is where T ends before S

2525

Gap Penalty

Definition:

A gap is a maximal, consecutive run
of spaces in a single sequence of a
given alignment.

Definition:

The length of a gap is the number of
indel operations.

2626

Gap Penalty
Motivation

DNA Sequences

 Insertion or deletion of an entire
subsequence often occurs as a single
mutational event.

 A set of these events can create many gaps
of varying sizes.

Protein Sequences

 Two protein sequences may be similar
except for some subunits that exist in the
one but not the other.

2727

Gap Penalty
Motivation

cDNA matching

 DNA transcribes to pre-mRNA the
complement of the gene’s DNA (with introns
and exons). After splicing mRNA (only
transcribed exons) results.

 When mRNA is captured from the cell, so
called cDNA can be transcribed which has
to be matched with the DNA in order to find
the gene from which it originally resulted.

 cDNA does not contain the gaps that the
original DNA exhibits because of the intron
regions.

2828

Gap Penalty

Constant Gap Penalty

g(k) = k*g

Affine Gap Penalty

g(k) = k*g + s

Convex Gap Penalty

each additional gap contributes less to the gap than the

previous space.

General Gap Penalty

g(k) arbitrary

2929

Algorithm for Sequence Alignment

with Affine Gap Penalty Model

Using 3 Matrices for

tracking the gap penalties:

B: S ------------i

T -----j____

A: S ------------i

T ------------j

C: S -----i____

T ------------j

V taken the max over

the three matrices.

3030

Algorithm for Sequence Alignment

with Affine Gap Penalty Model

for a

Still a time complexity of

3131

References

[1] R. Shamir, Algorithms in Molecular
Biology (2009 version), 2001.

[2] R. Shamir, Pairwise Alignment,
Scribe from Lecture, 2001.

[3] H.J. Hoogeboom, A.P. Gultyaev,
Lecture Notes, under development,
2009.

[4] H.J. Hoogeboom, Lecture Slides,
2009.

http://www.cs.tau.ac.il/~rshamir/algmb/01/algmb01.html
http://www.cs.tau.ac.il/~rshamir/algmb/algmb-archive.htm
http://www.cs.tau.ac.il/~rshamir/algmb/archive/pairwise_align.pdf
http://www.liacs.nl/~hoogeboo/mcb/lijn.pdf
http://www.liacs.nl/~hoogeboo/mcb/mcb-align.pdf

32

Problems to be Solved

Humane Genome

 23 pairs of chromosomes

 3.1 x 109 bases

 30.000 – 40.000 genes

 Protein variants from splicing ~ 1 x 106

 99.9% similarity between humans

33

Problems to be Solved

GenBank (February 2014)

 1,58 x 1011 bases

 1,71 x 108 sequence records

Whole Genome Shotgun (WGS)
submissions (February 2014)

 5,91 x 1011 bases

 1,40 x 108 sequence records

34

Problems to be Solved

The optimal alignment algorithms are too slow
 Long strings

 Huge databases

Multiple Alignment
 NP-Complete

 Until now exponential solutions only

Heuristics are needed
 FASTA along diagonals

 BLAST extend from minimal close matches

35

A USB-powered

DNA-Sequencer

MiniION NanoPores

 512 nanopores x 15bp/sec => ~7500 bp/sec

 6 hours lifetime => 150 x 106 bp

 $900 usb-powered DNA-Sequencer

36

A USB-powered

DNA-Sequencer

MiniION NanoPores

37

Possible Solutions

Problem

 Database size: >1011

 Query size: ~103

 Complexity of optimal (local) alignment algorithms such

as the Smith-Waterman Algorithm (1981): O(nm).

 May take many hours of processing time.

Solutions

 Hardware dynamic programming implementations

 Parallel implementation of sequence alignment
algorithms (GPUs and FPGAs)

 Using heuristics to improve speed

38

Some Figures

 Intel i7 ~ 0.15 TFlop/s

 NVidia Kepler ~ 1 – 3 TFlop/s

 Tianhe-2 ~ 33 862.7 TFlop/s

1 TFlop/s = 1.0 x 1012 Flop/s

Time complexity Smith-Waterman:

 O(103x1011) = O(1014)

 => Several hours or days on an Intel i7 machine

39

40

Heuristic Alignment Algorithms

Heuristics

 Heuristic algorithms aim at speeding up to O(max(n,m)) at

the price of possibly missing the best scoring alignment

 Allow a preprocessing phase on not frequently updated

databases

 Homologous sequences are expected to contain many

segments with matches or substitutions without indels and

gaps

 Substitutions are expected to be much likely than indels

41

Heuristic Alignment Algorithms

Two well known programs

 BLAST: Basic Local Alignment Search Tool

 FASTA: Fast Alignment Tool

 Both find high scoring local alignments

between a query sequence and a target

database

 Basic idea: first locate high-scoring short

stretches and then extend them

42

Dot Matrix Alignment Method

Dot Matrix Plot: Boolean matrices representing possible
alignments that can be detected visually

 Extremely simple but

 O(n2) in time and space

 Visual inspection

43

TGCA Matrix Plot

CGGA…
- GGA…

..G- - -AT..

..GCCTAA..

44

FASTA

Fast All [9,10]

FASTA a heuristic algorithm for sequence alignment by

Pearson & Lipman (1985, improved in 1988)

Motivation

 Good alignments should contain many exact matches

 Focus on segments of the compared sequences with

absolute identity

 Finding these segments by using the logic of the dot

matrix method

45

FASTA

FASTA a heuristic algorithm for sequence alignment by Pearson &

Lipman (1985, improved in 1988)

 View sequences as sequences of short words (k-tuple)

• DNA: k = 6 bases, protein: k = 1 or 2 amino acids

• k is a trade-off between speed and sensitivity

 Hot-spots are matching k-tuple substrings of the two

compared strings. Clearly, hot-spots are located along the

diagonals of the dot-plot matrix.

 A diagonal run is a sequence of nearby hot spots on the

same diagonal

• spaces between these hot-spots are allowed

• possibly multiple diagonal runs along the same diagonal

46

FASTA Algorithm

1. Look for hot spots

2. Find 10 best diagonal runs

3. Compute the best scoring diagonal run init1 and
discard low scoring runs

4. Combine close diagonal runs in order to compute the
best single larger high scoring alignment initn.

5. Determine a diagonal band (using parameter k)
around init1 and use dynamic programming to
compute the alternative optimal local alignment opt
within the band.

6. Rank the sequences in the database according to
initn or opt,

7. Use dynamic programming to align query against
each of the highest scoring results (sequences) from
the database.

47

FASTA (Fast Alignment)

48

FASTA Algorithm

1. Look for hot spots

 Make a hash table containing an entry for each
possible k-tuple (DNA => 4k with k = 6, Protein =>
20k with k = 2).

 Preprocess the complete database and store for
each sequence where a k-tuple appeared.

 Now scan the query by shifting a window with width
k along the query sequence and use the hash table
for retrieving the locations in the database.

Preprocessing the database takes O(c.m) where c is the
number of sequences of length m in the database.

Query processing has complexity O(n), where n the length of
the query sequence

49

FASTA Algorithm

2. Find 10 best diagonal runs
 Each hot-spot is given a positive score.

 The space between consecutives hot-spots along the
diagonal is given a negative score that decreases with
length.

 The score of a diagonal run is the sum of the hot-spots
plus the scores of the spaces in between.

 Find the 10 highest scoring diagonal runs.

Note that:

 We saw that hashing can find hot-spots in O(n) time

 Now diagonal runs can be formed from hot-spots quickly

by sorting the hot-spots by diagonal-position (i - j).

50

FASTA Algorithm

3. Compute the best scoring diagonal-run init1
and discard low scoring diagonal-runs

 The (10 best) diagonal-runs found thus far are

evaluated using a substitution matrix based

scoring function (1988 improvement).

• Note that there are no indels along a (diagonal) run.

 The highest scoring diagonal-run init1 is

determined.

 Furthermore, diagonal-runs that score below

a certain threshold are discarded.

51

FASTA Algorithm: initn

4. Combine close diagonal-runs in order to compute the
best single larger high scoring alignment initn.

 Take the high scoring diagonal-runs found in Step 3.

 Make a directed graph G as follows:

• Each vertex is a diagonal-run found in Step 3 with weight
equal to that score.

• There is an edge from u to v, if v starts at a higher row and
column than those at which u ends.

• The (negative) weight of (u,v) depends on the number of
gaps that would be created to make an alignment that
contains u followed by v.

 Find a maximum weight path in G and call this initn

Complexity: Given a DAG G=(V,E), finding a max-weight path can be
done in O(|V|+|E|) time using dynamic programming.

52

FASTA Algorithm: opt

5. Determine a diagonal band (using parameter k)

around diagonal-run init1
 The idea behind this is that the best local

alignment containing init1 is most likely within

this band, as init1 is a high scoring diagonal-run

lying within this band.

 The bandwidth is depending on k.

 Use dynamic programming to compute an

optimal local alignment called opt within the

band.

53

FASTA Algorithm

6. Rank the sequences in the database and determine
optimal local alignments to the query sequence of the
highest scoring database sequences.

 Each sequence in the database has an initn or opt
score with respect to the query sequence.

 Rank the sequences in the databases according to
their initn or opt score.

 Select the highest scoring sequences from the
database.

 Use the full dynamic programming algorithm to align
the query against each of these highest scoring
results from the database.

54

FASTA

Algorithm

55

FASTA Ranking [9]

56

FASTA Conclusions

 Scores compare well to optimal
alignment algorithms.

 It remains an heuristic: it is always
possible to construct examples in
which FASTA will not find the optimal
alignments.

 Much faster than ordinary dynamic
programming algorithm for sequence
alignment.

57

BLAST
Basic Local Alignment Search Tool [5]

BLAST, developed by Altschul, Gish, Miller, Myes, and

Lipman in 1990

 Increase speed over FASTA

 Find fewer and better hot-spots

 Therefore, integrate the substitution matrix already at

the first stage, when finding hot-spots.

 Originally developed for protein alignments.

58

BLAST

Given two sequences S1 and S2.

A segment pair is a pair of equal length subsequences of S1

and S2 that are aligned without gaps.

A locally maximal segment is a segment whose alignment
score does not increase when extending or shortening it.

A maximum segment pair MSP of S1 and S2 is a segment pair
with maximum score over all segment pairs in S1 and S2.

59

BLAST Algorithm

General idea:

 Given a database with sequences.

 Find all sequences that have an MSP

with the query string that has a score

≥ threshold S (these are so called

high scoring pairs HSP).

60

BLAST Algorithm

Step 1

 Given are length w, and threshold T.

 Find all w-length substrings (words) of database sequences
that align with words from the query string with a score (using
a substitution matrix score) ≥ T. If found it is called a hit.

 Note: we build for each w-length word in the query a data
structure containing all the w-length words that are similar with
a score ≥ T.

Note that:

 w can be relatively big (=> speed) without losing sensitivity: w
= 3 to 5 for protein sequences, and w ~12 for DNA sequences.

 w in general is kept fixed, while T is varied for a trade-off
between speed and sensitivity.

61

BLAST Algorithm

Step 2

 Extend each hit to a locally maximal segment.

 The extension will be stopped, if the reduction of the
score relative to the maximum value encountered ≥
given drop-off threshold.

 If the MSP has a score ≥ S, it will be maintained as an
HSP.

Note:

 This version of BLAST does not allow indels.

 It can be shown that most of the correct alignments are
found much more efficiently than using the standard
optimal method.

62

BLAST Improvement [7]

A version that allows indels:

1. Again consider the dot-plot matrix: search along the
diagonal for two w-length words with distance ≤ A and
score ≥ T. (T can be lower here.) Expansion is done only
to these pairs of hits.

2. Two local alignments from different diagonals are merged
into a new local alignment: alignment-1 followed by indels
followed by alignment-2, as long as the resulting
alignment has score ≥ some given threshold.

Note:

 This method is about 3 times faster than the original
BLAST as only two-hit words are expanded, i.e., much
less hits have to be processed.

63

BLAST (Basic Local Alignment Search Tool)

64

BLAST
ACT GAC TGA CT GACTGACTGAC TGACTGACTGA
CTG ACT GAC TG ACTGACTGACT GACTGACTGAC

TGA CTG AC TGA CTGACTGACTG ACTGACTGACT

• Both the DNA sequence and its complement are directed.
• The reading takes place in the designated direction.
• Per sequence there are 3 reading frames for reading codons.

Fixed word size w (=11)

• Fixed alignment score T
• Calculate for each word α of the first string all the

length-w words ν that are similar to α with
scoring at least T

• Using a keyword tree this can be done in linear
time (in length of the initial list of length-w words)

65

BLAST

• The length-w words of the first string and its high
scoring similar counterparts are stored in a dictionary

• The dictionary is used for finding exact matches with
the length-w words from the 2nd sequence

• If we find an exact match, we know that the scoring
with the original length-w word from the 1st sequence
is always above threshold T

• Fixed threshold S for scoring extensions
• For each ‘exact’ match that we found we

extend the alignment in both directions
while the score is above threshold S

• Close segments are merged

66

BLAST

 We now have long high scoring (above threshold S) segments

 The number of different segments is like in the case of FASTA
restricted to a diagonal band

 Again dynamic programming/max weight path can be used to
align the best segments and find the global alignment

 The scoring function can be used to derive the significance of
the matches

67

PSI-BLAST [7]

Yet another improved version of BLAST is called Position
Specific Iterated- (PSI-) BLAST.

Motivation

 A group of aligned amino acid sequences will show per
column a so called profile of amino acids.

 If the amino acids belong to the same family it is
expected that there will be some regions that have
profiles that show little variance. These are the
conserved regions that define the structures and
functionality specific for the family.

 How can we take into account this kind of statistical
information in BLAST. (Note, this info will in general not
be available in the scoring matrices used.)

68

PSI-BLAST sketch

1. Perform BLAST while using a different cost vector Vi for
each column i. Where Vi initially is equal to the row of the
substitution matrix corresponding to the i-th character in
the query sequence. (Vi is a per query character
substitution vector cost function.)

2. Use the high scoring results from step 1 to build profiles
per query character position.

3. Perform BLAST but now using as query the collection of
profiles, i.e., use a histogram at each column.

4. Update the profiles according to the obtained result
sequences. (basically, this is the same as updating the
position dependent cost vectors Vi)

5. Go to step 3, while we still find meaningful new matches,
otherwise stop.

Note: PSI-BLAST is able to find more distantly related
sequences than FASTA and BLAST, but may also find
too distant sequences.

69

Amino Acids Substitution Matrices

 Used scorings have a very important
impact on the results.

 Scorings should reflect biological
meaningfulness, molecular
phenomena, etc.

 Empirical observations on ancestral
sequences and their descendants
should be used to derive meaningful
scoring functions.

70

Amino Acids Substitution Matrices

No biological phenomena are employed by:

1) The unit matrix M, where

 Mij = 1 if i = j, and

 Mij = 0 otherwise.

2) The genetic code matrix M, where Mij equals the minimal
base substitutions that are necessary to convert the
codon of amino acid i into the codon of amino acid j.

Note:
1) measures similarity

2) measures distance.

71

PAM
Margaret Dayhoff et al. 1979 [6, 11]

Data set

71 super-families of protein sequences with

1572 accepted mutations

Observations

 Substitutions within protein families are not random

 Some substitutions occurred more frequent because
apparently there was no major effect on structure and
function

 As a consequence evolutionary related proteins do not
need to have the same amino acids at the same
position, comparable ones suffice.

72

PAM
Point Accepted Mutations

Percent Accepted Mutations

Definition

Sequences S1 and S2 are at an evolutionary distance of 1
PAM, if S1 evolved to S2 with an average of 1 accepted
point-mutation per 100 amino acids.

Note

 Accepted means the mutation was incorporated into
the protein and was passed to its progeny.

 If dPAM(S1,S2) = 1, it does not follow that S1 and S2

differ 1 percent. There can be more than 1 accepted
point-mutation on the same position.

 Additive: dPAM(S1,S2) + dPAM(S2,S3) = dPAM(S1,S3).

73

PAM units

Problems

 Ancestor-descendant relations between proteins are
unknown in general.

 It is assumed that amino acids mutations are
reversible and the probability of either direction is the
same.

 If Si and Sj have a mutual ancestor Sij, then
dPAM(Si,Sj) = dPAM(Si,Sij) + dPAM(Sij,Sj).

 Indels are ignored => matching position are uncertain.

 For sequences that are evolutionary distant this is a
major problem.

 Therefore consider conserved regions of protein
families.

74

PAM matrices

PAM matrices are amino acid substitution
matrices encoding the expected
evolutionary change.

For any pair (Ai ,Aj) the (i, j) entry in the
PAM-N matrix is a score equal to the log of
the probability that Ai replaces Aj in two
sequences that are N PAM units apart.

Question: How to we gather the valid statistics
to determine for example a PAM120 matrix?

75

PAM matrix generation

 Dayhoff used aligned highly similar

sequences with known evolutionary trees.

 PAM1 computation

 Mij is equal to the observed relative

frequency of Ai -> Aj during 1 PAM

 Mij is a 20x20 matrix where each column

adds up to 1.

From [6]: top of PAM1, with values equal to 104.Mij.

76

PAM-N matrix computation

 If we know M, then MN gives the probabilities of any
amino acid mutating to any other during N PAM units
=> PAM-N matrix.

 From PAM-N the matrix (cij) is derived:

where f(i) and f(j) are the observed frequencies of
amino acids Ai and Aj, respectively.

)(

),(
log

)()(

),()(
log

if

jiM

jfif

jiMjf
c

nn

ij 

77

BLOSUM
Block Substitution Matrix

An amino acid substitution matrix by

Henikoff and Henikoff in 1992 [8].

 PAM derived from globally aligned

proteins

 BLOSUM derived from alignments of

short blocks of sequences with a

defined level of similarity.

78

BLOSUM matrix calculation

 Blocks of over 500 groups of related family
members are used.

 Blocks act as signatures of the family.

Definition

A block is a conserved regions of a protein family with
the regions of the family members aligned.

From [2]: Alignments with marked conserved blocks.

79

BLOSUM matrix calculation

The BLOSUM matrix calculation stages:

1. Eliminate sequences that are identical more than x%
(this is to avoid bias).
 Either remove the sequence, or replace the

sequences by 1 representative.

 Matrix built from blocks with no more than x%
similarity is called BLOSUM X.

2. Calculate substitution statistics by counting each pair
in each column of the blocks of multiple alignment.
 For example: column AABACA => 6 AA-pairs, 4

AB-pairs, 4 AC-pairs, 1 BC pair.

3. Normalize the results.

80

BLOSUM matrix calculation

3) Normalization

 Let qij be the observed probability that a pair of amino acids
in the same column are Ai and Aj.

 Then pi is the observed probability of a certain amino acid to
be Ai:

 Assume that pi and pj are independent, then actually a given
pair should occur with relative frequencies eij = pipj, if i ≠ j.

 Now the odds matrix is given by (qij/eij)

 The log odd ratio sij = log2 (qij/pij)

 Finally, BLOSUM matrix B has as (i,j) entry = (rounded (sij))

Note:
 Sij=0, if observed = expected # differences between amino acid pairs

 Sij>0, if observed > expected # differences between amino acid pairs

 Sij<0, if observed < expected # differences between amino acid pairs





ji

ij

iii

q
qp

2

81

BLOSUM vs PAM

BLOSUM uses more sequences to compute
the necessary statistics than PAM …

Some tests showed:

 BLOSUM 45, 62, and 80 outperform PAM
120, 160, or 250.

 BLOSUM missed 6-9 positions while PAM
missed 30-31 positions.

 BLOSUM62 is found better than BLOSUM-
X (X≠62) and PAM-X.

82

BLOSOM62

83

References

[1] R. Shamir, Algorithms in Molecular
Biology (2009 version), 2001.

[2] R. Shamir, Sequence Alignment
Heuristics, Scribe from Lecture, 2001.

[3] H.J. Hoogeboom, A.P. Gultyaev,
Lecture Notes, under development,
2009.

[4] H.J. Hoogeboom, Lecture Slides,
2009.

http://www.cs.tau.ac.il/~rshamir/algmb/01/algmb01.html
http://www.cs.tau.ac.il/~rshamir/algmb/algmb-archive.htm
http://www.liacs.nl/~hoogeboo/mcb/lijn.pdf
http://www.liacs.nl/~hoogeboo/mcb/mcb-align.pdf

84

References

[5] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic
local alignment search tool. J Mol Biol, 215:403–10, 1990.

[6] M. Dayhoff and R. Schwartz. Matrices for detecting distant relationship.
Atlas of Protein Sequences, pages 353–358, 1979.

[7] S. F. Altschul et al. Gapped BLASTand PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res., 25(17):3389–
402, 1997.

[8] S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from
protein blocks. Proceedings of the National Academy of Science USA,
89(22):10915–10919, November 1992.

[9] D. Lipman and W. Pearson. Rapid and sensitive protein similarity
searches. Science, 227:1435–1441, 1985.

[10] D. Lipman and W. Pearson. Improved tools for biological sequence
comparison. Proceedings of the National Academy of Science USA,
85:2444–2448, 1988.

[11] R. Schwartz M. Dayhoff and B. Orcutt. A model of evolutionary change
in proteins. Atlas of Protein Sequence and Structure, 5:345–352, 1978.

